Engineering synthetic myosin filaments using DNA nanotubes

Ruth F. Sommese, Sivaraj Sivaramakrishnan

Research output: Chapter in Book/Report/Conference proceedingChapter

Abstract

Throughout the cell, motor proteins work together to drive numerous molecular processes and functions. For example, ensembles of myosin motors collectively transport vesicles and organelles, maintain membrane homeostasis, and drive muscle contraction. Studying these motors in groups has become increasingly important with work demonstrating the emergence of ensemble behavior distinct from individual motor behavior. One powerful technique that has been used in the last decade is DNA nanotechnology, which provides precise control over spacing and organization of patterned motor proteins. Until recently, however, most studies combining DNA nanostructures and molecular motors have been confined to discrete DNA structures with limited attachment points for motor proteins. In this chapter, we describe a new approach for making synthetic motor filaments using DNA nanotubes. We present methods for preparing myosin VI-labeled nanotubes and testing these nanotubes using a general in vitro motility setup. Overall, these nanotubes can easily be used to study other large ensembles of molecular motors, such as muscle myosin or ciliary dynein, both proteins that work in large motor ensembles to drive key cellular functions.

Original languageEnglish (US)
Title of host publicationMethods in Molecular Biology
PublisherHumana Press Inc.
Pages93-101
Number of pages9
DOIs
StatePublished - 2018

Publication series

NameMethods in Molecular Biology
Volume1805
ISSN (Print)1064-3745

Bibliographical note

Funding Information:
This work was supported by the American Heart Association Scientist Development Grant (13SDG14270009) and the NIH (1DP2 CA186752-01 and 1-R01-GM-105646-01-A1) to SS. RFS is a Life Sciences Research Foundation postdoctoral fellow.

Keywords

  • DNA nanotechnology
  • In vitro motility
  • Molecular motors
  • Myosin VI
  • Nanotubes

Fingerprint Dive into the research topics of 'Engineering synthetic myosin filaments using DNA nanotubes'. Together they form a unique fingerprint.

Cite this