Engineering the monomer composition of polyhydroxyalkanoates synthesized in Saccharomyces cerevisiae

Bo Zhang, Ross Carlson, Friedrich Srienc

Research output: Contribution to journalArticlepeer-review

48 Scopus citations

Abstract

Polyhydrosyalkanoates (PHAs) have received considerable interest as renewable-resource-based, biodegradable, and biocompatible plastics with a wide range of potential applications. We have engineered the synthesis of PHA polymers composed of monomers ranging from 4 to 14 carbon atoms in either the cytosol or the peroxisome of Saccharomyces cerevisiae by harnessing intermediates of fatty acid metabolism. Cytosolic PHA production was supported by establishing in the cytosol critical β-oxidation chemistries which are found natively in peroxisomes. This platform was utilized to supply medium-chain (C6 to C14) PHA precursors from both fatty acid degradation and synthesis to a cytosolically expressed medium-chain-length (mcl) polymerase from Pseudomonas oleovorans. Synthesis of short-chain-length PHAs (scl-PHAs) was established in the peroxisome of a wild-type yeast strain by targeting the Ralstonia eutropha scl polymerase to the peroxisome. This strain, harboring a perosisomally targeted scl-PHA synthase, accumulated PHA up to approximately 7% of its cell dry weight. These results indicate (i) that S. cerevisiae expressing a cytosolic mcl-PHA polymerase or a peroxisomal scl-PHA synthase can use the 3-hydroxyacyl coenzyme A intermediates from fatty acid metabolism to synthesize PHAs and (ii) that fatty acid degradation is also possible in the cytosol as β-oxidation might not be confined only to the peroxisomes. Polymers of even-numbered, odd-numbered, or a combination of even- and odd-numbered monomers can be controlled by feeding the appropriate substrates. This ability should permit the rational design and synthesis of polymers with desired material properties.

Original languageEnglish (US)
Pages (from-to)536-543
Number of pages8
JournalApplied and environmental microbiology
Volume72
Issue number1
DOIs
StatePublished - Jan 2006

Fingerprint

Dive into the research topics of 'Engineering the monomer composition of polyhydroxyalkanoates synthesized in Saccharomyces cerevisiae'. Together they form a unique fingerprint.

Cite this