Evaluation of core concepts of physiology in undergraduate physiology curricula: results from faculty and student surveys

Claudia I. Stanescu, Erica A. Wehrwein, Lisa C. Anderson, Jennifer Rogers

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

Stanescu CI, Wehrwein EA, Anderson LC, Rogers J. Evaluation of core concepts of physiology in undergraduate physiology curricula: results from faculty and student surveys. Adv Physiol Educ 44: 632–639, 2020; doi:10.1152/advan.00187.2019.—Unlike other STEM (Science, Technology, Engineering, Mathematics) disciplines, program guidelines for undergraduate physiology degree programs have yet to be firmly established. The purpose of this study was to examine the use of physiology core concepts within undergraduate physiology curricula to discern whether a common subset could be broadly recommended for inclusion in programmatic guidelines. A curricular survey tool was developed to evaluate the depth to which each core concept was included in physiology curricula. Seven self-selected physiology programs assessed core concept inclusion across all courses within the major (0 = not covered, 1 = minimally covered, and 2 = covered to a great extent). The top core concepts ranked by each institution varied considerably, but all were robustly represented across programs. The top five combined rankings for all institutions were as follows: 1) interdependence (1.47 ± 0.63); 2) structure/ function (1.46 ± 0.72); 3) homeostasis (1.45 ± 0.71); 4) scientific reasoning (1.44 ± 0.70); and 5) cell-cell communication (1.38 ± 0.75). No common subset of specific core concepts was evident among the seven participating institutions. Next, results were compared with recent Physiology Majors Interest Group (P-MIG) faculty and student surveys that ascertained perceptions of the top five most important core concepts. Three core concepts (homeostasis, structure/ function, cell-cell communication) appeared in the top five in more than one-half of survey questions included. We recommend that future programmatic guidelines focus on inclusion of the core concepts of physiology as general models to scaffold learning in physiology curricula, but the programmatic guidelines should allow flexibility in the core concepts emphasized based on program objectives.

Original languageEnglish (US)
Pages (from-to)632-639
Number of pages8
JournalAdvances in Physiology Education
Volume44
Issue number44
DOIs
StatePublished - 2020

Bibliographical note

Publisher Copyright:
© 2020 The American Physiological Society

Keywords

  • Physiology Majors Interest Group
  • core concepts of physiology
  • physiology program guidelines
  • undergraduate physiology

PubMed: MeSH publication types

  • Editorial

Fingerprint

Dive into the research topics of 'Evaluation of core concepts of physiology in undergraduate physiology curricula: results from faculty and student surveys'. Together they form a unique fingerprint.

Cite this