Evolution of symmetry and structure of the gap in iron-based superconductors with doping and interactions

S. Maiti, M. M. Korshunov, T. A. Maier, P. J. Hirschfeld, A. V. Chubukov

Research output: Contribution to journalArticlepeer-review

83 Scopus citations

Abstract

We present a detailed study of the symmetry and structure of the pairing gap in Fe-based superconductors (FeSCs). We treat FeSCs as quasi-2D, decompose the pairing interaction in the XY plane in s-wave and d-wave channels into contributions from scattering between different Fermi surfaces, and analyze how each scattering evolves with doping and input parameters. We verify that each interaction is well approximated by the lowest angular harmonics. We use this simplification to analyze the interplay between the interaction with and without spin-fluctuation components, the origin of the attraction in the s ± and d x2-y2 channels, the competition between them, the angular dependence of the s ± gaps along the electron Fermi surface, the conditions under which the s ± gap develops nodes, and the origin of superconductivity in heavily electron- or hole-doped systems, when only Fermi surfaces of one type are present. We also discuss the relation between RPA and RG approaches for FeSCs.

Original languageEnglish (US)
Article number224505
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume84
Issue number22
DOIs
StatePublished - Dec 15 2011

Fingerprint

Dive into the research topics of 'Evolution of symmetry and structure of the gap in iron-based superconductors with doping and interactions'. Together they form a unique fingerprint.

Cite this