Evolutionary modeling of combination treatment strategies to overcome resistance to tyrosine kinase inhibitors in non-small cell lung cancer

Shannon M. Mumenthaler, Jasmine Foo, Kevin Leder, Nathan C. Choi, David B. Agus, William Pao, Parag Mallick, Franziska Michor

Research output: Contribution to journalArticlepeer-review

39 Scopus citations

Abstract

Many initially successful anticancer therapies lose effectiveness over time, and eventually, cancer cells acquire resistance to the therapy. Acquired resistance remains a major obstacle to improving remission rates and achieving prolonged disease-free survival. Consequently, novel approaches to overcome or prevent resistance are of significant clinical importance. There has been considerable interest in treating non-small cell lung cancer (NSCLC) with combinations of EGFR-targeted therapeutics (e.g., erlotinib) and cytotoxic therapeutics (e.g., paclitaxel); however, acquired resistance to erlotinib, driven by a variety of mechanisms, remains an obstacle to treatment success. In about 50% of cases, resistance is due to a T790M point mutation in EGFR, and T790M-containing cells ultimately dominate the tumor composition and lead to tumor regrowth. We employed a combined experimental and mathematical modeling-based approach to identify treatment strategies that impede the outgrowth of primary T790M-mediated resistance in NSCLC populations. Our mathematical model predicts the population dynamics of mixtures of sensitive and resistant cells, thereby describing how the tumor composition, initial fraction of resistant cells, and degree of selective pressure influence the time until progression of disease. Model development relied upon quantitative experimental measurements of cell proliferation and death using a novel microscopy approach. Using this approach, we systematically explored the space of combination treatment strategies and demonstrated that optimally timed sequential strategies yielded large improvements in survival outcome relative to monotherapies at the same concentrations. Our investigations revealed regions of the treatment space in which low-dose sequential combination strategies, after preclinical validation, may lead to a tumor reduction and improved survival outcome for patients with T790M-mediated resistance.

Original languageEnglish (US)
Pages (from-to)2069-2079
Number of pages11
JournalMolecular pharmaceutics
Volume8
Issue number6
DOIs
StatePublished - Dec 5 2011

Keywords

  • erlotinib
  • evolutionary modeling
  • non-small cell lung cancer
  • paclitaxel
  • resistance
  • treatment strategies

Fingerprint Dive into the research topics of 'Evolutionary modeling of combination treatment strategies to overcome resistance to tyrosine kinase inhibitors in non-small cell lung cancer'. Together they form a unique fingerprint.

Cite this