Fcγ receptor III and Fcγ receptor IV on macrophages drive autoimmune valvular carditis in mice

Patricia M. Hobday, Jennifer L. Auger, Gregory R. Schuneman, Stefanie Haasken, J. Sjef Verbeek, Bryce A. Binstadt

Research output: Contribution to journalArticlepeer-review

15 Scopus citations

Abstract

Objective Arthritis and valvular carditis coexist in several human rheumatic diseases, including systemic lupus erythematosus, rheumatic fever, and rheumatoid arthritis. T cell receptor-transgenic K/BxN mice develop spontaneous autoantibody-associated arthritis and valvular carditis. The common Fc receptor γ (FcRγ) signaling chain is required for carditis to develop in K/BxN mice. FcRγ pairs with numerous receptors in a variety of cells. The aim of this study was to identify the FcRγ-associated receptors and Fcγ receptor (FcγR)-expressing cells that mediate valvular carditis in this model. Methods We bred K/BxN mice lacking the genes that encode activating Fcγ receptors (FcγRI, FcγRIII, and FcγRIV), and we assessed these mice for valvular carditis. We similarly evaluated complement component C3-deficient K/BxN mice. Immunohistochemistry, bone marrow transplantation, and macrophage depletion were used to define the key FcRγ-expressing cell type. Results Genetic deficiency of only one of the activating Fcγ receptors did not prevent carditis, whereas deficiency of all 3 activating Fcγ receptors did. Further analysis demonstrated that FcγRIII and FcγRIV were the key drivers of valve inflammation; FcγRI was dispensable. C3 was not required. FcRγ expression by radioresistant cells was critical for valvular carditis to develop, and further analysis indicated that macrophages were the key candidate FcγR-expressing effectors of carditis. Conclusion FcγRIII and FcγRIV act redundantly to promote valvular carditis in K/BxN mice with systemic autoantibody-associated arthritis. Macrophage depletion reduced the severity of valve inflammation. These findings suggest that pathogenic autoantibodies engage Fcγ receptors on macrophages to drive valvular carditis. Our study provides new insight into the pathogenesis of cardiovascular inflammation in the setting of autoantibody-associated chronic inflammatory diseases.

Original languageEnglish (US)
Pages (from-to)852-862
Number of pages11
JournalArthritis and Rheumatology
Volume66
Issue number4
DOIs
StatePublished - Apr 2014

Fingerprint

Dive into the research topics of 'Fcγ receptor III and Fcγ receptor IV on macrophages drive autoimmune valvular carditis in mice'. Together they form a unique fingerprint.

Cite this