First principle insights into the electrocatalytic oxidation of ethanol over Pt and PtMo surfaces

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The electrocatalytic oxidation of ethanol in proton exchange membrane fuel cells is of great interest. The oxidation of ethanol however is met with a number of challenges that result from activating the C-C bond. First-principle density functional theoretical calculations were carried out herein to investigate the oxidation of ethanol over Pt and different Pt-Mo alloy surfaces. The reaction energies and activation barriers for the main pathways involved in the complete oxidation to CO 2 were calculated to establish potential energy profiles and possible rate-limiting steps. The sluggishness of the carbon-carbon (C-C) cleavage reaction and the oxidative removal of poisonous single carbon (C1) intermediates, especially CO, have been probed in detail. It was found that by alloying Pt with Mo, the O-H bond could be selectively activated. The oxidative removal of poisonous C1 intermediates is promoted by adding Mo to the surface as well as to the subsurface. The computational results were calculated for a range of different Pt-Mo alloy surface ensembles and compared with results reported in the literature.

Original languageEnglish (US)
Title of host publication11AIChE - 2011 AIChE Annual Meeting, Conference Proceedings
StatePublished - Dec 1 2011
Event2011 AIChE Annual Meeting, 11AIChE - Minneapolis, MN, United States
Duration: Oct 16 2011Oct 21 2011

Publication series

Name11AIChE - 2011 AIChE Annual Meeting, Conference Proceedings

Other

Other2011 AIChE Annual Meeting, 11AIChE
Country/TerritoryUnited States
CityMinneapolis, MN
Period10/16/1110/21/11

Fingerprint

Dive into the research topics of 'First principle insights into the electrocatalytic oxidation of ethanol over Pt and PtMo surfaces'. Together they form a unique fingerprint.

Cite this