First-principles study of high pressure structure phase transition and elastic properties of titanium

Yanjun Hao, Jun Zhu, Lin Zhang, Jianying Qu, Haisheng Ren

Research output: Contribution to journalArticlepeer-review

38 Scopus citations

Abstract

We present a study of the structural phase transition and elastic properties of titanium (Ti) by using the projector augmented wave (PAW) within the Perdew-Burke-Ernzerhof (PBE) form of generalized-gradient approximation (GGA). The calculated phase transition ω → γ at ca. 116.5 GPa, which agrees well with the experimentally observed transition pressure of 116.0 ± 4.0 GPa. However, other theoretical calculations are far from experimental value. We also find that the δ phase is not stable in the whole pressure range considered and phase transition from γ to β phase occurs at 162.4 GPa. This conclusion is in accordance with those of Joshi et al. and Vermal et al., but in disagreement with the experimental results of Vohra et al. and Akahama et al. Especially, the elastic properties of ω-Ti under high pressure are studied for the first time. We note that the compressional and shear wave velocities as well as the bulk B and shear moduli G increase monotonically with increasing pressure. By analyzing R G/B, the brittle-ductile behavior of Ti is assessed. Polycrystalline elastic properties are also obtained successfully for a complete description of elastic properties. Binding interaction of water soluble cobalt (II) complex containing Schiff base ligand, SF, with calf thymus DNA (CT-DNA) has been investigated and the result were compared with the SF.

Original languageEnglish (US)
Pages (from-to)1473-1479
Number of pages7
JournalSolid State Sciences
Volume12
Issue number8
DOIs
StatePublished - Aug 2010
Externally publishedYes

Bibliographical note

Funding Information:
We acknowledge the support for this work by the Fundamental Research Funds for the Central Universities ( 2009SCU11124 ) and the National Key Laboratory fund for shock wave and detonation physics research ( 9140C6701010901 ).

Keywords

  • Elastic properties
  • First-principles study
  • Phase transition
  • Ti

Fingerprint

Dive into the research topics of 'First-principles study of high pressure structure phase transition and elastic properties of titanium'. Together they form a unique fingerprint.

Cite this