Foraging for dark matter in large volume liquid scintillator neutrino detectors with multiscatter events

Joseph Bramante, Benjamin Broerman, Jason Kumar, Rafael F. Lang, Maxim Pospelov, Nirmal Raj

Research output: Contribution to journalArticlepeer-review

32 Scopus citations

Abstract

We show that dark matter with a per-nucleon scattering cross section 10-28 cm2 could be discovered by liquid scintillator neutrino detectors like Borexino, SNO+, and JUNO. Due to the large dark matter fluxes admitted, these detectors could find dark matter with masses up to 1021 GeV, surpassing the mass sensitivity of current direct detection experiments (such as XENON1T and PICO) by over 2 orders of magnitude. We derive the spin-independent and spin-dependent cross section sensitivity of these detectors using existing selection triggers, and we propose an improved trigger program that enhances this sensitivity by 2 orders of magnitude. We interpret these sensitivities in terms of three dark matter scenarios: (1) effective contact operators for scattering, (2) QCD-charged dark matter, and (3) a recently proposed model of Planck-mass baryon-charged dark matter. We calculate the flux attenuation of dark matter at these detectors due to the earth overburden, taking into account the earth's density profile and elemental composition, as well as nuclear spins.

Original languageEnglish (US)
Article number083010
JournalPhysical Review D
Volume99
Issue number8
DOIs
StatePublished - Apr 15 2019
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2019 authors. Published by the American Physical Society.

Fingerprint

Dive into the research topics of 'Foraging for dark matter in large volume liquid scintillator neutrino detectors with multiscatter events'. Together they form a unique fingerprint.

Cite this