Genetic composition of captive panda population

Jiandong Yang, Fujun Shen, Rong Hou, Yang Da

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Background: A major function of the captive panda population is to preserve the genetic diversity of wild panda populations in their natural habitats. Understanding the genetic composition of the captive panda population in terms of genetic contributions from the wild panda populations provides necessary knowledge for breeding plans to preserve the genetic diversity of the wild panda populations. Results: The genetic contributions from different wild populations to the captive panda population were highly unbalanced, with Qionglai accounting for 52.2 % of the captive panda gene pool, followed by Minshan with 21.5 %, Qinling with 10.6 %, Liangshan with 8.2 %, and Xiaoxiangling with 3.6 %, whereas Daxiangling, which had similar population size as Xiaoxiangling, had no genetic representation in the captive population. The current breeding recommendations may increase the contribution of some small wild populations at the expense of decreasing the contributions of other small wild populations, i.e., increasing the Xiaoxiangling contribution while decreasing the contribution of Liangshan, or sharply increasing the Qinling contribution while decreasing the contributions of Xiaoxiangling and Liangshan, which were two of the three smallest wild populations and were already severely under-represented in the captive population. We developed three habitat-controlled breeding plans that could increase the genetic contributions from the smallest wild populations to 6.7-11.2 % for Xiaoxiangling, 11.5-12.3 % for Liangshan and 12.9-20.0 % for Qinling among the offspring of one breeding season while reducing the risk of hidden inbreeding due to related founders from the same habitat undetectable by pedigree data. Conclusion: The three smallest wild panda populations of Daxiangling, Xiaoxiangling and Liangshan either had no representation or were severely unrepresented in the current captive panda population. By incorporating the breeding goal of increasing the genetic contributions from the smallest wild populations into breeding plans, the severely under-represented small wild populations in the current captive panda population could be increased steadily for the near future.

Original languageEnglish (US)
Article number133
JournalBMC genetics
Volume17
Issue number1
DOIs
StatePublished - Oct 3 2016

Bibliographical note

Funding Information:
This project was supported by Innovative Research Team in University of Sichuan Bureau of Education and the Scientific Research Fund of Sichuan Provincial Education Department (11ZA077) and by Agricultural Experiment Station at the University of Minnesota (MN-16-043).

Publisher Copyright:
© 2016 The Author(s).

Keywords

  • Captive breeding
  • Genetic composition
  • Giant panda
  • Habitat

Fingerprint

Dive into the research topics of 'Genetic composition of captive panda population'. Together they form a unique fingerprint.

Cite this