Genome-scale identification of soybean BURP domain-containing genes and their expression under stress treatments.

Hongliang Xu, Yaxuan Li, Yueming Yan, K. Wang, Y. Gao, Yingkao Hu

Research output: Contribution to journalArticlepeer-review

58 Scopus citations

Abstract

Multiple proteins containing BURP domain have been identified in many different plant species, but not in any other organisms. To date, the molecular function of the BURP domain is still unknown, and no systematic analysis and expression profiling of the gene family in soybean (Glycine max) has been reported. In this study, multiple bioinformatics approaches were employed to identify all the members of BURP family genes in soybean. A total of 23 BURP gene types were identified. These genes had diverse structures and were distributed on chromosome 1, 2, 4, 6, 7, 8, 11, 12, 13, 14, and 18. Phylogenetic analysis suggested that these BURP family genes could be classified into 5 subfamilies, and one of which defines a new subfamily, BURPV. Quantitative real-time PCR (qRT-PCR) analysis of transcript levels showed that 15 of the 23 genes had no expression specificity; 7 of them were specifically expressed in some of the tissues; and one of them was not expressed in any of the tissues or organs studied. The results of stress treatments showed that 17 of the 23 identified BURP family genes responded to at least one of the three stress treatments; 6 of them were not influenced by stress treatments even though a stress related cis-element was identified in the promoter region. No stress related cis-elements were found in promoter region of any BURPV member. However, qRT-PCR results indicated that all members from BURPV responded to at least one of the three stress treatments. More significantly, the members from the RD22-like subfamily showed no tissue-specific expression and they all responded to each of the three stress treatments. We have identified and classified all the BURP domain-containing genes in soybean. Their expression patterns in different tissues and under different stress treatments were detected using qRT-PCR. 15 out of 23 BURP genes in soybean had no tissue-specific expression, while 17 out of them were stress-responsive. The data provided an insight into the evolution of the gene family and suggested that many BURP family genes may be important for plants responding to stress conditions.

Original languageEnglish (US)
Pages (from-to)197
Number of pages1
JournalBMC plant biology
Volume10
DOIs
StatePublished - 2010
Externally publishedYes

Bibliographical note

Funding Information:
Authors would like to thank the Returned Overseas Scholar Special Fund of Beijing for financial support. HX would like to thank Wan Ping, associate professor from school of life sciences, Capital Normal University, for all the help with bioinformatics. On behalf all the authors, HX would like to thank Dr. Tobias Kieser from UK for all the advices on the manuscript.

Fingerprint

Dive into the research topics of 'Genome-scale identification of soybean BURP domain-containing genes and their expression under stress treatments.'. Together they form a unique fingerprint.

Cite this