Hardware efficient, deterministic QCAC matrix based compressed sensing encoder architecture for wireless neural recording application

Wenfeng Zhao, Biao Sun, Tong Wu, Zhi Yang

Research output: Chapter in Book/Report/Conference proceedingConference contribution


Wireless neural recording technologies are severely constrained by the limited energy efficiencies and telemetry bandwidth, while data compression or feature extraction techniques can be utilized to relax the burdens on the wireless data link. Compressed Sensing (CS) is an emerging approach for efficient data compression in wireless sensing applications. However, state-of-the-art CS encoder designs still lead to large area and energy overheads. This paper presents a novel CS encoder hardware design by incorporating deterministic measurement matrix, namely Quasi-Cyclic Array Code (QCAC) matrix, to improve overall area and power metrics over prior arts, while still preserving comparable signal recovery performance based on classic reconstruction algorithms. We demonstrate the advantages of the proposed QCAC-CS encoder design for spike data compression in neural recording application. Compared to the state-of-the-art CS encoder designs, QCAC-based CS encoder achieves on average (with compression ratio ranging from 0.0625 to 0.25) 42.7% and 49.5% reduction in encoder area and total power consumption, respectively. And the compressed spikes from the QCAC-CS encoder can be recovered with comparable performance toward random matrix based CS encoder designs.

Original languageEnglish (US)
Title of host publicationProceedings - 2016 IEEE Biomedical Circuits and Systems Conference, BioCAS 2016
PublisherInstitute of Electrical and Electronics Engineers Inc.
Number of pages4
ISBN (Electronic)9781509029594
StatePublished - 2016
Event12th IEEE Biomedical Circuits and Systems Conference, BioCAS 2016 - Shanghai, China
Duration: Oct 17 2016Oct 19 2016

Publication series

NameProceedings - 2016 IEEE Biomedical Circuits and Systems Conference, BioCAS 2016


Other12th IEEE Biomedical Circuits and Systems Conference, BioCAS 2016

Bibliographical note

Publisher Copyright:
© 2016 IEEE.

Cite this