Harnessing Bandit Online Learning to Low-Latency Fog Computing

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

This paper focuses on the online fog computing tasks in the Internet-of-Things (IoT), where online decisions must flexibly adapt to the changing user preferences (loss functions), and the temporally unpredictable availability of resources (constraints). Tailored for such human-in-the-loop systems where the loss functions are hard to model, a family of bandit online saddle-point (BanSP) schemes are developed, which adaptively adjust the online operations based on (possibly multiple) bandit feedback of the loss functions, and the changing environment. Performance here is assessed by: i) dynamic regret that generalizes the widely used static regret; and, ii) fit that captures the accumulated amount of constraint violations. Specifically, BanSP is proved to simultaneously yield sub-linear dynamic regret and fit, provided that the best dynamic solutions vary slowly over time. Numerical tests on fog computing tasks corroborate that BanSP offers desired performance under such limited information.

Original languageEnglish (US)
Title of host publication2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages6418-6422
Number of pages5
ISBN (Print)9781538646588
DOIs
StatePublished - Sep 10 2018
Event2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018 - Calgary, Canada
Duration: Apr 15 2018Apr 20 2018

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2018-April
ISSN (Print)1520-6149

Other

Other2018 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2018
CountryCanada
CityCalgary
Period4/15/184/20/18

Bibliographical note

Funding Information:
This work was supported by NSF 1509040, 1508993, and 1711471.

Keywords

  • Bandit convex optimization
  • Computation offloading
  • Fog computing
  • Internet of Things
  • Online learning

Fingerprint Dive into the research topics of 'Harnessing Bandit Online Learning to Low-Latency Fog Computing'. Together they form a unique fingerprint.

Cite this