High-Resolution Extended X-ray Absorption Fine Structure Analysis Provides Evidence for a Longer Fe···Fe Distance in the Q Intermediate of Methane Monooxygenase

George E. Cutsail, Rahul Banerjee, Ang Zhou, Lawrence Que, John D. Lipscomb, Serena Debeer

Research output: Contribution to journalArticlepeer-review

74 Scopus citations

Abstract

Despite decades of intense research, the core structure of the methane C-H bond breaking diiron(IV) intermediate, Q, of soluble methane monooxygenase remains controversial, with conflicting reports supporting either a "diamond" diiron core structure or an open core structure. Early extended X-ray absorption fine structure (EXAFS) data assigned a short 2.46 Å Fe-Fe distance to Q (Shu et al. Science 1997, 275, 515) that is inconsistent with several theoretical studies and in conflict with our recent high-resolution Fe K-edge X-ray absorption spectroscopy (XAS) studies (Castillo et al. J. Am. Chem. Soc. 2017, 139, 18024). Herein, we revisit the EXAFS of Q using high-energy resolution fluorescence-detected extended X-ray absorption fine structure (HERFD-EXAFS) studies. The present data show no evidence for a short Fe-Fe distance, but rather a long 3.4 Å diiron distance, as observed in open core synthetic model complexes. The previously reported 2.46 Å feature plausibly arises from a background metallic iron contribution from the experimental setup, which is eliminated in HERFD-EXAFS due to the increased selectivity. Herein, we explore the origin of the short diiron feature in partial-fluorescent yield EXAFS measurements and discuss the diagnostic features of background metallic scattering contribution to the EXAFS of dilute biological samples. Lastly, differences in sample preparation and resultant sample inhomogeneity in rapid-freeze quenched samples for EXAFS analysis are discussed. The presented approaches have broad implications for EXAFS studies of all dilute iron-containing samples.

Original languageEnglish (US)
Pages (from-to)16807-16820
Number of pages14
JournalJournal of the American Chemical Society
Volume140
Issue number48
DOIs
StatePublished - Dec 5 2018

Bibliographical note

Publisher Copyright:
© 2018 American Chemical Society.

Fingerprint

Dive into the research topics of 'High-Resolution Extended X-ray Absorption Fine Structure Analysis Provides Evidence for a Longer Fe···Fe Distance in the Q Intermediate of Methane Monooxygenase'. Together they form a unique fingerprint.

Cite this