Human Mesenchymal Stromal Cell (MSC) Characteristics Vary Among Laboratories When Manufactured From the Same Source Material: A Report by the Cellular Therapy Team of the Biomedical Excellence for Safer Transfusion (BEST) Collaborative

David F. Stroncek, Ping Jin, David H. McKenna, Minoko Takanashi, Magali J. Fontaine, Shibani Pati, Richard Schäfer, Emily Peterson, Eric Benedetti, Jo Anna Reems

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Background: Culture-derived mesenchymal stromal cells (MSCs) exhibit variable characteristics when manufactured using different methods and different source materials. The purpose of this study was to assess the impact on MSC characteristics when different laboratories propagated MSCs from cultures initiated with BM aliquots derived from the same donor source material. Methods and Methods: Five aliquots from each of three different BM donors were distributed to five independent laboratories. Three laboratories plated whole BM and two laboratories a mononuclear BM cell fraction. Four laboratories cultured in media supplemented with fetal bovine serum (FBS) and one laboratory used human platelet lysate (hPL). Initial cell seeding densities (i.e., P0) ranged from 19.7 × 103/cm2–282 × 103/cm2 and for second seeding (i.e., P1) 0.05 × 103–5.1 × 103 cells/cm2. Post-thawed MSCs from each laboratory were analyzed for cell viability, immunophenotype, tri-lineage differentiation, fibroblast colony-forming units (CFU-F), gene expression, and immunosuppressive activity. Results: Transit times from BM collection to receipt by laboratories located in the United States ranged from 16.0–30.0 h and from 41.5–71.5 h for a laboratory in Asia. Post-thaw culture derived MSCs rom BM #1, #2, and #3 exhibited viabilities that ranged from 74–92%, 61–96%, and 23–90%, respectively. CFU activity from BM #1, #2, and #3 per 200 MSCs plated averaged 45.1 ± 21.4, 49.3 ± 26.8 and 14.9 ± 13.3, respectively. No substantial differences were observed in immunophenotype, and immunosuppressive activities. Global gene expression profiles of MSCs revealed transcriptome differences due to different inter-laboratory methods and to donor source material with the center effects showing greater molecular differences than source material. Conclusion: Functional and molecular differences exist among MSCs produced by different centers even when the same BM starting material is used to initiate cultures. These results indicated that manufacturing of MSCs by five independent centers contributed more to MSC variability than did the source material of the BM used in this study. Thus, emphasizing the importance of establishing worldwide standards to propagate MSCs for clinical use.

Original languageEnglish (US)
Article number458
JournalFrontiers in Cell and Developmental Biology
Volume8
DOIs
StatePublished - Jun 16 2020

Bibliographical note

Funding Information:
We would like to express our appreciation to MNX Critical Logistics Simplified and Biolife Solutions for supporting the overseas transport of samples for this study. In particular to David Miller and Jim Boss for facilitating the transport. We would also like to express our gratitude to Jiaqiang Ren at the National Institute of Health, Darin Sumstad at the University of Minnesota, and Beate Heissig at the Center for Stem Cell Biology and Regenerative Medicine at the Institute of Medical Science at the University of Tokyo.

Publisher Copyright:
© Copyright © 2020 Stroncek, Jin, McKenna, Takanashi, Fontaine, Pati, Schäfer, Peterson, Benedetti and Reems.

Keywords

  • bone marrow
  • mesenchymal stromal cells
  • quality
  • transcriptome
  • variability

PubMed: MeSH publication types

  • Journal Article

Fingerprint

Dive into the research topics of 'Human Mesenchymal Stromal Cell (MSC) Characteristics Vary Among Laboratories When Manufactured From the Same Source Material: A Report by the Cellular Therapy Team of the Biomedical Excellence for Safer Transfusion (BEST) Collaborative'. Together they form a unique fingerprint.

Cite this