Hybrid continuum mechanics and atomistic methods for simulating materials deformation and failure

Ronald E. Miller, Ellad B. Tadmor

Research output: Contribution to journalArticlepeer-review

46 Scopus citations

Abstract

Many aspects of materials deformation and failure are controlled by atomic-scale phenomena that can be explored using molecular statics and molecular dynamics simulations. However, many of these phenomena involve processes on multiple length scales with the result that full molecular statics/molecular dynamics simulations of the entire system are too large to be tractable. In this review, we discuss hybrid models that perform molecular statics/molecular dynamics simulations "without all the atoms," aimed at retaining atomistic detail at a fraction of the computational cost. These methods couple a fully atomistic model in critical regions to regions described by less-expensive continuum methods where they can provide an adequate representation of the important physics. We give an overview of the challenges such models present, with a focus on recent work to address issues of dynamics and finite (non-zero) temperature.

Original languageEnglish (US)
Pages (from-to)920-926
Number of pages7
JournalMRS Bulletin
Volume32
Issue number11
DOIs
StatePublished - Nov 2007

Fingerprint

Dive into the research topics of 'Hybrid continuum mechanics and atomistic methods for simulating materials deformation and failure'. Together they form a unique fingerprint.

Cite this