Hybrid reynolds-averaged and large-eddy simulation of scramjet fuel injection

David M. Peterson, Erik B. Tylczak, Graham V Candler

Research output: Chapter in Book/Report/Conference proceedingConference contribution

15 Scopus citations

Abstract

Numerical simulations of a model scramjet combustor are presented. The simulations use a hybrid Reynolds-averaged Navier-Stokes and Large-eddy simulation turbulence model in order to resolve the large-scale turbulent structure of the injection flowfield. A low- dissipation flux evaluation scheme and a Crank-Nicolson type time integration scheme ensure that a large range of length scales are resolved in the simulation. Simulations are presented for a non-reacting mixing case, and a case in which combustion occurs. Finite- rate chemistry is coupled with the flow solver for the simulation of the combusting case. Measurements of N2 mole fraction and temperature are used to validate the predictions of the simulation in the mixing case. The simulation results are found to be in good agreement with the experimental measurements. The results from the mixing case are then used to investigate the mixing characteristics and turbulence field inside of the model combustor. The flow is found to self-ignite in the simulation of the reacting case. However, comparisons to mole fraction and temperature measurements indicate lower levels of combustion occur in the simulation than in the experiment. The pressure rise due to combustion is significantly lower in the simulation than measured in the experiment.

Original languageEnglish (US)
Title of host publication17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference 2011
DOIs
StatePublished - 2011
Event17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference 2011 - San Francisco, CA, United States
Duration: Apr 11 2011Apr 14 2011

Publication series

Name17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference 2011

Other

Other17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference 2011
Country/TerritoryUnited States
CitySan Francisco, CA
Period4/11/114/14/11

Bibliographical note

Funding Information:
The authors would like to thank Professor Andrew Cutler for providing data for the scholar combustor. This research is sponsored by the Air Force Office of Scientific Research under grant FA9550-10-1-0352 and by the National Security Science and Engineering Faculty Fellowship. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the afosr or the U.S. Government. Computer time was provided by the Minnesota Supercomputing Institute.

Fingerprint

Dive into the research topics of 'Hybrid reynolds-averaged and large-eddy simulation of scramjet fuel injection'. Together they form a unique fingerprint.

Cite this