Hydrogen bonding and compartmentalization of water in supercooled and frozen aqueous acetone solutions

Jason Malsam, Alptekin Aksan

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

Temperature ramp Fourier transform infrared (FTIR) microspectroscopy was utilized to examine hydrogen bonding (HB) in and crystallization of supercooled aqueous acetone solutions. We showed that temperature and concentration- dependent transitions between different water populations, representing distinct HB organization, played very significant roles in ice crystallization and formation of distinct thermodynamic phases in supercooled aqueous solutions. At cryogenic temperatures, mainly three different coexisting thermodynamic phases were identified: a hexagonal ice phase, which exhibited linear planar growth with supercooling; a low water content supercooled solution rich in water monomers and dimers, which froze at lower temperatures as a result of a significant increase in HB networking; and a high water content frozen solution. We show that spectroscopic analysis of water in polar solutions at cryogenic temperatures present a unique platform to explore the freezing/melting/ vitrification behavior of water.

Original languageEnglish (US)
Pages (from-to)4238-4245
Number of pages8
JournalJournal of Physical Chemistry B
Volume114
Issue number12
DOIs
StatePublished - Apr 1 2010

Fingerprint

Dive into the research topics of 'Hydrogen bonding and compartmentalization of water in supercooled and frozen aqueous acetone solutions'. Together they form a unique fingerprint.

Cite this