Identification of a new iron-regulated virulence gene, ireA, in an extraintestinal pathogenic isolate of Escherichia coli

T. A. Russo, U. B. Carlino, J. R. Johnson

Research output: Contribution to journalArticlepeer-review

114 Scopus citations

Abstract

Our laboratory is studying an extraintestinal pathogenic isolate of Escherichia coli (CP9) as a model pathogen. We have been using human urine, ascites, and blood ex vivo to identify genes with increased expression in these media relative to expression in Luria-Bertani (LB) broth. Such genes may represent new or unrecognized virulence traits. In this study, we report the identification of a new gene, ireA (iron-responsive element). This gene has an open reading frame of 2,049 nucleotides, and its peptide has a molecular mass of 75.3 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Its expression is increased a mean of 3.6-fold in human urine, 16.2-fold in human ascites, and 6.6-fold in human blood relative to expression in LB medium, and it is Fe repressible. IreA also exhibits peptide similarities (48 to 56%) to previously identified proteins that function as siderophore receptors, suggesting that IreA is involved in iron acquisition. PCR-based analysis of ireA's phylogenetic distribution detected ireA in none (0%) of 14 fecal isolates that represented probable commensal strains, but in 13 (26%) of 50 random urine and blood clinical isolates (P = 0.05) and in 5 (100%) of 5 representatives of the J96-like, clonal group of which CP9 is a member (P < 0.001). In a mouse urinary tract infection model, the presence of ireA contributed significantly to CP9's ability to colonize the bladder (P < 0.02), evidence that IreA is a urovirulence factor. Taken together, these findings demonstrate that ireA encodes a new virulence factor, which is likely involved in Fe acquisition.

Original languageEnglish (US)
Pages (from-to)6209-6216
Number of pages8
JournalInfection and immunity
Volume69
Issue number10
DOIs
StatePublished - 2001

Fingerprint

Dive into the research topics of 'Identification of a new iron-regulated virulence gene, ireA, in an extraintestinal pathogenic isolate of Escherichia coli'. Together they form a unique fingerprint.

Cite this