TY - GEN
T1 - Improving the run time of the (1 + 1) evolutionary algorithm with luby sequences
AU - Friedrich, Tobias
AU - Quinzan, Francesco
AU - Kötzing, Timo
AU - Sutton, Andrew M.
PY - 2018/7/2
Y1 - 2018/7/2
N2 - In the context of black box optimization, one of the most common ways to handle deceptive attractors is to periodically restart the algorithm. In this paper, we explore the benefits of combining the simple (1+1) Evolutionary Algorithm (EA) with the Luby Universal Strategy - the (1 + 1) EAU , a meta-heuristic that does not require parameter tuning. We first consider two artificial pseudo-Boolean landscapes, on which the (1 + 1) EA exhibits exponential run time. We prove that the (1 + 1) EAU has polynomial run time on both instances. We then consider the Minimum Vertex Cover on two classes of graphs. Again, the (1 + 1) EA yields exponential run time on those instances, and the (1 + 1) EAU finds the global optimum in polynomial time. We conclude by studying the Makespan Scheduling. We consider an instance on which the (1 + 1) EA does not find a (4/3 − )- approximation in polynomial time, and we show that the (1 + 1) EAU reaches a (4/3 −)-approximation in polynomial time. We then prove that the (1 + 1) EAU serves as an Efficient Polynomial-time Approximation Scheme (EPTAS) for the Partition Problem, for a (1 +)-approximation with > 4/n.
AB - In the context of black box optimization, one of the most common ways to handle deceptive attractors is to periodically restart the algorithm. In this paper, we explore the benefits of combining the simple (1+1) Evolutionary Algorithm (EA) with the Luby Universal Strategy - the (1 + 1) EAU , a meta-heuristic that does not require parameter tuning. We first consider two artificial pseudo-Boolean landscapes, on which the (1 + 1) EA exhibits exponential run time. We prove that the (1 + 1) EAU has polynomial run time on both instances. We then consider the Minimum Vertex Cover on two classes of graphs. Again, the (1 + 1) EA yields exponential run time on those instances, and the (1 + 1) EAU finds the global optimum in polynomial time. We conclude by studying the Makespan Scheduling. We consider an instance on which the (1 + 1) EA does not find a (4/3 − )- approximation in polynomial time, and we show that the (1 + 1) EAU reaches a (4/3 −)-approximation in polynomial time. We then prove that the (1 + 1) EAU serves as an Efficient Polynomial-time Approximation Scheme (EPTAS) for the Partition Problem, for a (1 +)-approximation with > 4/n.
KW - Combinatorial optimization
KW - Deceptive attractors
KW - Restart strategy
UR - http://www.scopus.com/inward/record.url?scp=85050633974&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85050633974&partnerID=8YFLogxK
U2 - 10.1145/3205455.3205525
DO - 10.1145/3205455.3205525
M3 - Conference contribution
AN - SCOPUS:85050633974
T3 - GECCO 2018 - Proceedings of the 2018 Genetic and Evolutionary Computation Conference
SP - 301
EP - 308
BT - GECCO 2018 - Proceedings of the 2018 Genetic and Evolutionary Computation Conference
PB - Association for Computing Machinery, Inc
T2 - 2018 Genetic and Evolutionary Computation Conference, GECCO 2018
Y2 - 15 July 2018 through 19 July 2018
ER -