Indirect matrix converter based open-end winding AC drives with zero common-mode voltage

Saurabh Tewari, Ranjan K. Gupta, Apurva Somani, Ned Mohan

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Scopus citations

Abstract

Common-mode voltage (CMV) generated by semiconductor switching causes stray currents and mechanical failure in modern drive systems. Solutions employed to attenuate or isolate the common-mode voltage (CMV) require additional components, and may still fail to eliminate the detrimental effects. Matrix converter based open-end winding drives, when modulated using synchronous vectors, do not generate CMV to begin with. Additionally, these drives do not rely upon a large DC capacitor that is used in the state-of-the-art systems; and are therefore expected to be more compact and reliable. This paper will present prototypes of two distinct indirect matrix converter based open-end winding drives that eliminate output common-mode voltage, provide high voltage transfer ratio (up to 1.5), and allow input power factor control. These indirect drives have the additional advantages of clamp circuit elimination, lower voltage stress on the devices, naturally intelligent commutation, and natural low-voltage ride-through integration over their direct matrix converter counterpart. Experimental evidence of the voltage transfer ratio and input power factor control will be provided. Compared to 2-level and 3-level inverters, significant reduction in the CMV induced shaft voltage and ground currents will be shown. An optimal third-order grid filter applicable to all matrix converter based drives will also be discussed. This filter will be used with the presented drives to validate its superior performance.

Original languageEnglish (US)
Title of host publication2016 IEEE Applied Power Electronics Conference and Exposition, APEC 2016
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1520-1527
Number of pages8
ISBN (Electronic)9781467383936
DOIs
StatePublished - May 10 2016
Event31st Annual IEEE Applied Power Electronics Conference and Exposition, APEC 2016 - Long Beach, United States
Duration: Mar 20 2016Mar 24 2016

Publication series

NameConference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC
Volume2016-May

Other

Other31st Annual IEEE Applied Power Electronics Conference and Exposition, APEC 2016
Country/TerritoryUnited States
CityLong Beach
Period3/20/163/24/16

Fingerprint

Dive into the research topics of 'Indirect matrix converter based open-end winding AC drives with zero common-mode voltage'. Together they form a unique fingerprint.

Cite this