Inefficient crystal packing in chiral [Ru(phen)3](PF 6)2 enables oxygen molecule quenching of the solid-state MLCT emission

Kari A. McGee, Kent R. Mann

Research output: Contribution to journalArticlepeer-review

51 Scopus citations

Abstract

The molecular oxygen quenching of the solid-state emission from pure crystals of δ-Ru(phen)3(PF6)2, δ-Ru(phen) 3(PF6)2, and racemic Ru(phen)3(PF 6)2 (phen = 1,10-phenanthroline) was studied by emission spectroscopy. Crystals of the pure enantiomers exhibit significant and nearly identical emission-intensity quenching [0.36(2) and 0.33(2), respectively] in the presence of air [where the fraction quenched is (/nitrogen-/ air)//nitrogen]; in comparison, the racemic compound shows a much lower value [0.05(2)]. The large difference in the quenching behavior is a result of major structural differences between the two chiral salts and the racemic salt. The chiral compounds crystallize in the space groups P4 1 and P43 respectively, with toluene and acetonitrile molecules in the lattice that can be partially removed to create void-space channels. These open channels allow the diffusion of oxygen molecules within the crystals and enable efficient emission quenching that is not possible in the closely packed racemic salt. Lifetime measurements, thermal gravimetric analysis, and single-crystal X-ray structure determinations support these conclusions. copy; 2009 American Chemical Society.

Original languageEnglish (US)
Pages (from-to)1896-1902
Number of pages7
JournalJournal of the American Chemical Society
Volume131
Issue number5
DOIs
StatePublished - Feb 11 2009

Fingerprint

Dive into the research topics of 'Inefficient crystal packing in chiral [Ru(phen)3](PF 6)2 enables oxygen molecule quenching of the solid-state MLCT emission'. Together they form a unique fingerprint.

Cite this