Influence of hydraulic accumulator performance on the hydraulic hybrid powertrain

Qi Zhang, Feng Wang, Bing Xu, Kim A. Stelson

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Owing to its high power density, hydraulic hybrid is considered as an effective approach to reducing the fuel consumption of heavy duty vehicles. A gas-charged hydraulic accumulator serves as the power buffer, storing and releasing hydraulic power through gas. An accurate hydraulic accumulator model is crucial to predict its actual performance. There are two widely used accumulator models: isothermal and adiabatic models. Neither of these models are practical to reflect its real performance in the hydraulic hybrid system. Therefore, the influence of an accumulator model considering thermal hysteresis on a hydraulic hybrid wheel loader has been studied in this paper. The difference of three accumulator models (isothermal, adiabatic and energy balance) has been identified. A dynamic simulation model of the hydraulic hybrid wheel loader has been developed. The fuel consumptions of the hydraulic hybrid wheel loader with three accumulator models has been compared. The influence of heat transfer coefficient of the accumulator housing has also been studied.

Original languageEnglish (US)
Title of host publicationASME/BATH 2019 Symposium on Fluid Power and Motion Control, FPMC 2019
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791859339
DOIs
StatePublished - 2020
EventASME/BATH 2019 Symposium on Fluid Power and Motion Control, FPMC 2019 - Longboat Key, United States
Duration: Oct 7 2019Oct 9 2019

Publication series

NameASME/BATH 2019 Symposium on Fluid Power and Motion Control, FPMC 2019

Conference

ConferenceASME/BATH 2019 Symposium on Fluid Power and Motion Control, FPMC 2019
Country/TerritoryUnited States
CityLongboat Key
Period10/7/1910/9/19

Bibliographical note

Funding Information:
This research was supported by the State Key Laboratory of Fluid Power and Mechatronic Systems at Zhejiang University, Natural Science Foundation of China (51875509 and 91748210) and NSFC-Zhejiang Joint Fund (U1509204).

Publisher Copyright:
Copyright © 2019 ASME

Fingerprint

Dive into the research topics of 'Influence of hydraulic accumulator performance on the hydraulic hybrid powertrain'. Together they form a unique fingerprint.

Cite this