Initial steps of thermal decomposition of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate crystals from quantum mechanics

Qi An, Wei Guang Liu, William A. Goddard, Tao Cheng, Sergey V. Zybin, Hai Xiao

Research output: Contribution to journalArticlepeer-review

68 Scopus citations

Abstract

Dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate (TKX-50) is a recently synthesized energetic material (EM) with most promising performance, including high energy content, high density, low sensitivity, and low toxicity. TKX-50 forms an ionic crystal in which the unit cell contains two bistetrazole dianions {c-((NO)N3C)-[c-(CN3(NO)], formal charge of -2} and four hydroxylammonium (NH3OH)+ cations (formal charge of +1). We report here quantum mechanics (QM)-based reaction studies to determine the atomistic reaction mechanisms for the initial decompositions of this system. First we carried out molecular dynamics simulations on the periodic TKX-50 crystal using forces from density functional based tight binding calculations (DFTB-MD), which finds that the chemistry is initiated by proton transfer from the cation to the dianion. Continuous heating of this periodic system leads eventually to dissociation of the protonated or diprotonated bistetrazole to release N2 and N2O. To refine the mechanisms observed in the periodic DFTB-MD, we carried out finite cluster quantum mechanics studies (B3LYP) for the unimolecular decomposition of the bistetrazole. We find that for the bistetrazole dianion, the reaction barrier for release of N2 is 45.1 kcal/mol, while release of N2O is 72.2 kcal/mol. However, transferring one proton to the bistetrazole dianion decreases the reaction barriers to 37.2 kcal/mol for N2 release and 59.5 kcal/mol for N2O release. Thus, we predict that the initial decompositions in TKX-50 lead to N2 release, which in turn provides the energy to drive further decompositions. On the basis of this mechanism, we suggest changes to make the system less sensitive while retaining the large energy release. This may help improve the synthesis strategy of developing high nitrogen explosives with further improved performance. (Chemical Equation Presented).

Original languageEnglish (US)
Pages (from-to)27175-27181
Number of pages7
JournalJournal of Physical Chemistry C
Volume118
Issue number46
DOIs
StatePublished - Nov 20 2014

Bibliographical note

Publisher Copyright:
© 2014 American Chemical Society.

Fingerprint

Dive into the research topics of 'Initial steps of thermal decomposition of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate crystals from quantum mechanics'. Together they form a unique fingerprint.

Cite this