Interplay of many-body and single-particle interactions in iridates and rhodates

Natalia B. Perkins, Yuriy Sizyuk, Peter Wölfle

Research output: Contribution to journalArticlepeer-review

33 Scopus citations


Motivated by recent experiments exploring the spin-orbit-coupled magnetism in 4d- and 5d-band transition metal oxides, we study magnetic interactions in Ir- and Rh-based compounds. In these systems, the comparable strength of spin-orbit coupling, crystal-field splitting, and Coulomb and Hund's coupling leads to a rich variety of magnetic exchange interactions, leading to new types of ground states. Using a strong coupling approach, we derive effective low-energy superexchange Hamiltonians from the multiorbital Hubbard model by taking full account of the Coulomb and Hund's interactions in the intermediate states. We find that in the presence of strong SOC and lattice distortions the superexchange Hamiltonian contains various kinds of magnetic anisotropies. Here we are primarily interested in the magnetic properties of Sr2IrO4 and Sr2Ir1-xRhxO4 compounds. We perform a systematic study of how magnetic interactions in these systems depend on the microscopic parameters and provide a thorough analysis of the resulting magnetic phase diagram. Comparison of our results with experimental data shows good agreement. Finally, we discuss the parameter space in which the spin-flop transition in Sr2IrO4, experimentally observed under pressure, can be realized.

Original languageEnglish (US)
Article number035143
JournalPhysical Review B - Condensed Matter and Materials Physics
Issue number3
StatePublished - Jan 29 2014


Dive into the research topics of 'Interplay of many-body and single-particle interactions in iridates and rhodates'. Together they form a unique fingerprint.

Cite this