Investigation of Isoprene Dynamics During the Day-to-Night Transition Period

Dandan Wei, Hariprasad D. Alwe, Dylan B. Millet, Sarah C. Kavassalis, Michelle Lew, Brandon Bottorff, Philip S. Stevens, Allison L. Steiner

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

At the University of Michigan Biological Station during the 2016 AMOS field campaign, isoprene concentrations typically peak in the early afternoon (around 15:00 local time, LT) under well-mixed conditions. However, an end-of-day peak (around 21:00 LT) occurs on 23% of the campaign days, followed by a rapid removal (from 21:00–22:00 LT) at rate of 0.57 hr−1 during the day-to-night transition period. During the end-of-day peak, in-canopy isoprene concentrations increase by 77% (from 3.5 to 6.2 ppbv) on average. Stratification and weak winds (<3.4 m s−1 at 46 m) significantly suppress turbulent exchanges between in- and above-canopy, leading to accumulation of isoprene emitted at dusk. A critical standard deviation of the vertical velocity (σw) of 0.14, 0.2, and 0.29 m s−1 is identified to detect the end-of-day peak for the height of 13, 21, and 34 m, respectively. In 85% of the end-of-day cases, the wind speed increases above 2.5 m s−1 after the peak along with a shift in wind direction, and turbulence is reestablished. Therefore, the wind speed of 2.5 m s−1 is considered as the threshold point where turbulence switches from being independent of wind speed to dependent on wind speed. The reinstated turbulence accounts for 80% of the subsequent isoprene removal with the remaining 20% explained by chemical reactions with hydroxyl radicals, ozone, and nitrate radicals. Observed isoprene fluxes do not support the argument that the end-of-day peak is reduced by vertical turbulent mixing, and we hypothesize that horizontal advection may play a role.

Original languageEnglish (US)
Article numbere2020JD032784
JournalJournal of Geophysical Research Atmospheres
Volume125
Issue number20
DOIs
StatePublished - Oct 27 2020

Bibliographical note

Funding Information:
We acknowledge support by National Oceanic and Atmospheric Administration under grant NA18OAR4310116. D. B. M. and H. D. A. acknowledge support from the National Science Foundation (grants 1932771 and 1428257). M. L., B. B., and P. S. acknowledge grants from the National Science Foundation (AGS‐1440834 and AGS‐1827450).

Publisher Copyright:
©2020. American Geophysical Union. All Rights Reserved.

Keywords

  • forest canopy
  • isoprene
  • isoprene-OH chemistry
  • transition period
  • turbulent mixing

Fingerprint

Dive into the research topics of 'Investigation of Isoprene Dynamics During the Day-to-Night Transition Period'. Together they form a unique fingerprint.

Cite this