Ion mobility-high resolution mass spectrometry in anti-doping analysis. Part I: Implementation of a screening method with the assessment of a library of substances prohibited in sports

Kateřina Plachká, Julian Pezzatti, Alessandro Musenga, Raul Nicoli, Tiia Kuuranne, Serge Rudaz, Lucie Nováková, Davy Guillarme

Research output: Contribution to journalArticlepeer-review

Abstract

In this series of two papers, 192 doping agents belonging to the classes of stimulants, narcotics, cannabinoids, diuretics, β2-agonists, β-blockers, anabolic agents, and hormone and metabolic modulators were investigated, with the aim to assess the benefits and limitations of ion mobility spectrometry (IMS) in combination with ultra-high performance liquid chromatography (UHPLC) and high resolution mass spectrometry (HRMS) in anti-doping analysis. In this first part, a generic UHPLC-IM-HRMS method was successfully developed to analyze these 192 doping agents in standard solutions and urine samples, and an exhaustive database including retention times, TWCCSN2 values, and m/z ratios was constructed. Urine samples were analyzed using either a simple “dilute and shoot” procedure or a supported liquid-liquid extraction (SLE) procedure, depending on the physicochemical properties of the compounds and sensitivity criteria established by the World Anti-Doping Agency (WADA) as the minimum required performance levels (MRPL). Then, the precision of the generic UHPLC-IM-HRMS method was assessed as intraday, interday as well as interweek variation of UHPLC retention times and TWCCSN2 values, for which RSD the values were always lower than 2% in urine samples. The possibility to filter MS data using IMS dimension was also investigated, and in average, the application of IMS filtration provided low energy MS spectra with 86% less interfering peaks in both standard and urine samples. Therefore, the filtered MS spectra allowed for an easier interpretation and a lower risk of false positive result interpretations. Finally, IMS also offers additional selectivity to the UHPLC-HRMS enabling to separate isobaric and isomeric substances. Among the selected set of 192 doping agents, there were 30 pairs of isobaric or isomeric compounds, and only two pairs could not be resolved under the developed conditions. This illustrates the potential of adding ion mobility to UHPLC-HRMS in anti-doping analyses.

Original languageEnglish (US)
Article number338257
JournalAnalytica Chimica Acta
Volume1152
DOIs
StatePublished - Apr 1 2021

Bibliographical note

Funding Information:
The authors gratefully acknowledge the grant projects SVV No. 260 548, and the STARSS project (Reg. No. CZ.02.1.01/0.0/0.0/15_003/0000465 ) co-funded by ERDF . Authors wish to thank Prof. Jean-Luc Veuthey from the University of Geneva for his fruitful comments and discussions.

Keywords

  • Collision cross section
  • Doping analysis
  • High resolution mass spectrometry
  • Ion mobility spectrometry
  • Ultra-high performance liquid chromatography

PubMed: MeSH publication types

  • Journal Article

Fingerprint Dive into the research topics of 'Ion mobility-high resolution mass spectrometry in anti-doping analysis. Part I: Implementation of a screening method with the assessment of a library of substances prohibited in sports'. Together they form a unique fingerprint.

Cite this