Isolation of racemic 2,4-pentanediol and 2,5-hexanediol from commercial mixtures of racemic and meso isomers by way of cyclic sulfites.

Gaétan Caron, Romas J. Kazlauskas

Research output: Contribution to journalArticlepeer-review

33 Scopus citations

Abstract

Enantiomerically pure diols with C2 symmetry such as 23-butanediol, 1, 2,4-pentanediol, 2, and 2,5-hexanediol, 3, are useful chiral auxiliaries, but they are expensive because chemists lack good synthetic routes that eliminate both the meso isomer and one enantiomer. Enzymic resolutions efficiently separate the enantiomer, but do not remove the meso isomer. To simplify enzymic resolutions of 2 and 3, we developed simple methods to isolate the racemic isomer from commercial mixtures of racemic and meso isomers. For 2, the meso isomer selectively reacted with SOCl2 to give a cyclic sulfite that was removed by column chromatography to leave (±)-2,92% de, 1.4 g, 55% yield. For 3, both meso and racemic isomers reacted with SOCl2 to give cyclic sulfites, but the sulfite derived from the meso isomer rearranged to trans-2,5-dimethyltetrahydrofuran under acidic conditions. Hydrolysis of the remaining sulfite gave (±)-3,84% de, 1.1 g, 37% yield. Resolution of (±)-2 and (±)-3 using lipase from Pseudomonas cepacia yielded (2R,4R)-2-diacetate, 78% ee, > 97% de.40% of theory and(2R,5R)-3-diacetate, 94% ee. > 97% de, 47% of theory. Previously reported acetylations of 2 and 3 by lipase from Candida antarctica (CAL) or by lipase from Pseudomonas sp. (Amano lipase AK) are more enantioselective and thus, the best route to enantiomerically and diastereomerically pure 2 and 3 is removal of the meso isomer by way of cyclic sulfites followed by resolution with CAL or Amano lipase AK,.

Original languageEnglish (US)
Pages (from-to)657-664
Number of pages8
JournalTetrahedron: Asymmetry
Volume5
Issue number4
DOIs
StatePublished - Apr 1994

Fingerprint Dive into the research topics of 'Isolation of racemic 2,4-pentanediol and 2,5-hexanediol from commercial mixtures of racemic and meso isomers by way of cyclic sulfites.'. Together they form a unique fingerprint.

Cite this