TY - GEN
T1 - Justification, design, and analysis of a village-scale photovoltaic-powered electrodialysis reversal system for rural India
AU - Wright, Natasha C.
AU - Van De Zande, Georgia
AU - Winter, Amos G.
PY - 2015/1/1
Y1 - 2015/1/1
N2 - This paper presents the merits of village-scale photovoltaic (PV) powered electrodialysis reversal (EDR) systems for rural India and the design and analysis of such a system built by the authors with planned testing to be completed in March 2015 in Alamogordo, New Mexico. The requirements for the system include daily water output of 6-15 m3/day (enough potable water for the average village size of 2,000-5,000 people), removal of dissolved salts in addition to biological contaminants, photovoltaic power source, recovery ratio of greater than 85% and appropriate maintenance and service scheme. At present, most village-scale desalination systems use reverse osmosis (RO), however the managing NGOs have found the systems to be cost prohibitive in off-grid locations. EDR has the potential to be more cost effective than currently installed village-scale RO systems in off-grid locations due to the lower specific energy consumption of EDR versus RO at high recovery ratios. This leads to lower power system cost and overall capital expense. The system developed in this study is designed to validate whether the system requirements can be met in terms of recovery ratio, product water quality, specific energy consumption, and expected capital cost. The system is designed to desalinate 3600 ppm brackish groundwater to 350 ppm at a rate of 1.6 m3/hour and a recovery of 92%. This paper reviews the scope of the market for village scale desalination, existing groundwater salinity levels, and presents the design methodology and resulting system parameters for a village-scale PV-EDR field trial.
AB - This paper presents the merits of village-scale photovoltaic (PV) powered electrodialysis reversal (EDR) systems for rural India and the design and analysis of such a system built by the authors with planned testing to be completed in March 2015 in Alamogordo, New Mexico. The requirements for the system include daily water output of 6-15 m3/day (enough potable water for the average village size of 2,000-5,000 people), removal of dissolved salts in addition to biological contaminants, photovoltaic power source, recovery ratio of greater than 85% and appropriate maintenance and service scheme. At present, most village-scale desalination systems use reverse osmosis (RO), however the managing NGOs have found the systems to be cost prohibitive in off-grid locations. EDR has the potential to be more cost effective than currently installed village-scale RO systems in off-grid locations due to the lower specific energy consumption of EDR versus RO at high recovery ratios. This leads to lower power system cost and overall capital expense. The system developed in this study is designed to validate whether the system requirements can be met in terms of recovery ratio, product water quality, specific energy consumption, and expected capital cost. The system is designed to desalinate 3600 ppm brackish groundwater to 350 ppm at a rate of 1.6 m3/hour and a recovery of 92%. This paper reviews the scope of the market for village scale desalination, existing groundwater salinity levels, and presents the design methodology and resulting system parameters for a village-scale PV-EDR field trial.
UR - http://www.scopus.com/inward/record.url?scp=84978967675&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84978967675&partnerID=8YFLogxK
U2 - 10.1115/DETC201546521
DO - 10.1115/DETC201546521
M3 - Conference contribution
AN - SCOPUS:84978967675
T3 - Proceedings of the ASME Design Engineering Technical Conference
BT - 41st Design Automation Conference
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2015
Y2 - 2 August 2015 through 5 August 2015
ER -