TY - JOUR
T1 - KLS-type isoperimetric bounds for log-concave probability measures
AU - Bobkov, Sergey G.
AU - Cordero-Erausquin, Dario
N1 - Publisher Copyright:
© 2015, Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag Berlin Heidelberg.
Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2016/6
Y1 - 2016/6
N2 - The paper considers geometric lower bounds on the isoperimetric constant for logarithmically concave probability measures, extending and refining some results by Kannan et al. (Discret Comput Geom 13:541–559, 1995).
AB - The paper considers geometric lower bounds on the isoperimetric constant for logarithmically concave probability measures, extending and refining some results by Kannan et al. (Discret Comput Geom 13:541–559, 1995).
KW - Geometric functional inequalities
KW - Isoperimetric inequalities
KW - Logarithmically concave distributions
UR - http://www.scopus.com/inward/record.url?scp=84923241429&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84923241429&partnerID=8YFLogxK
U2 - 10.1007/s10231-015-0483-1
DO - 10.1007/s10231-015-0483-1
M3 - Article
AN - SCOPUS:84923241429
VL - 195
SP - 681
EP - 695
JO - Annali di Matematica Pura ed Applicata
JF - Annali di Matematica Pura ed Applicata
SN - 0373-3114
IS - 3
ER -