Lossy compression of permutations

Da Wang, Arya Mazumdar, Gregory W. Wornell

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

We investigate the lossy compression of permutations by analyzing the trade-off between the size of a source code and the distortion with respect to Kendall tau distance, Spearman's footrule, Chebyshev distance and ℓ1 distance of inversion vectors. We show that given two permutations, Kendall tau distance upper bounds the ℓ1 distance of inversion vectors and a scaled version of Kendall tau distance lower bounds the ℓ1 distance of inversion vectors with high probability, which indicates an equivalence of the source code designs under these two distortion measures. Similar equivalence is established for all the above distortion measures, every one of which has different operational significance and applications in ranking and sorting. These findings show that an optimal coding scheme for one distortion measure is effectively optimal for other distortion measures above.

Original languageEnglish (US)
Title of host publication2014 IEEE International Symposium on Information Theory, ISIT 2014
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages11-15
Number of pages5
ISBN (Print)9781479951864
DOIs
StatePublished - 2014
Event2014 IEEE International Symposium on Information Theory, ISIT 2014 - Honolulu, HI, United States
Duration: Jun 29 2014Jul 4 2014

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
ISSN (Print)2157-8095

Other

Other2014 IEEE International Symposium on Information Theory, ISIT 2014
CountryUnited States
CityHonolulu, HI
Period6/29/147/4/14

Fingerprint Dive into the research topics of 'Lossy compression of permutations'. Together they form a unique fingerprint.

Cite this