Low-power circuit analysis and design based on heterojunction tunneling transistors (HETTs)

Yoonmyung Lee, Daeyeon Kim, Jin Cai, Isaac Lauer, Leland Chang, Steven J. Koester, David Blaauw, Dennis Sylvester

Research output: Contribution to journalArticlepeer-review

36 Scopus citations


The theoretical lower limit of subthreshold swing in mosfets (60 mV/decade) significantly restricts low-voltage operation since it results in a low ON-to-OFF current ratio at low supply voltages. This paper investigates extremely low-power circuits based on new Si/SiGe heterojunction tunneling transistors (HETTs) that have a subthreshold swing of < 60 mV decade. Device characteristics, as determined through technology computer aided design tools, are used to develop a Verilog-A device model to simulate and evaluate a range of HETT-based circuits. We show that an HETT-based ring oscillator (RO) shows a 9-19 times reduction in dynamic power compared to a CMOS RO. We also explore two key differences between HETTs and traditional mosfets, namely, asymmetric current flow and increased Miller capacitance, analyze their effect on circuit behavior, and propose methods to address them. HETT characteristics have the most dramatic impact on static random access memory (SRAM) operation and we propose a novel seven-transistor HETT-based SRAM cell topology to overcome, and take advantage of, the asymmetric current flow. This new HETT SRAM design achieves 7-37 times reduction in leakage power compared to CMOS.

Original languageEnglish (US)
Article number6417263
Pages (from-to)1632-1643
Number of pages12
JournalIEEE Transactions on Very Large Scale Integration (VLSI) Systems
Issue number9
StatePublished - Aug 20 2013


  • 7T SRAM
  • heterojunction tunneling transistors (HETT)
  • low-power
  • tunneling transistor


Dive into the research topics of 'Low-power circuit analysis and design based on heterojunction tunneling transistors (HETTs)'. Together they form a unique fingerprint.

Cite this