Magnetoresistance of compensated semimetals in confined geometries

P. S. Alekseev, A. P. Dmitriev, I. V. Gornyi, V. Yu Kachorovskii, B. N. Narozhny, Michael Schuett, M. Titov

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

Two-component conductors - e.g., semimetals and narrow-band semiconductors - often exhibit unusually strong magnetoresistance in a wide temperature range. Suppression of the Hall voltage near charge neutrality in such systems gives rise to a strong quasiparticle drift in the direction perpendicular to the electric current and magnetic field. This drift is responsible for a strong geometrical increase of resistance even in weak magnetic fields. Combining the Boltzmann kinetic equation with sample electrostatics, we develop a microscopic theory of magnetotransport in two and three spatial dimensions. The compensated Hall effect in confined geometry is always accompanied by electron-hole recombination near the sample edges and at large-scale inhomogeneities. As the result, classical edge currents may dominate the resistance in the vicinity of charge compensation. The effect leads to linear magnetoresistance in two dimensions in a broad range of parameters. In three dimensions, the magnetoresistance is normally quadratic in the field, with the linear regime restricted to rectangular samples with magnetic field directed perpendicular to the sample surface.

Original languageEnglish (US)
Article number165410
JournalPhysical Review B
Volume95
Issue number16
DOIs
StatePublished - Apr 10 2017

Bibliographical note

Publisher Copyright:
© 2017 American Physical Society.

Fingerprint Dive into the research topics of 'Magnetoresistance of compensated semimetals in confined geometries'. Together they form a unique fingerprint.

Cite this