Measuring Knee Bone Marrow Perfusion Using Arterial Spin Labeling at 3 T

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

Bone perfusion is an essential physiological measure reflecting vasculature status and tissue viability of the skeletal system. Arterial spin labeling (ASL), as a non-invasive and non-contrast enhanced perfusion imaging method, is an attractive approach for human research studies. To evaluate the feasibility of ASL perfusion imaging of knee bone marrow in the distal femoral condyle at a 3 T MRI scanner, a study was performed with eight healthy volunteers (three males and five females, 26 ± 2 years old) and two patients (male, 15 and 11 years old) with diagnosed stage II juvenile osteochondritis dissecans (JOCD). ASL imaging utilized a flow-sensitive alternating inversion recovery method for labeling and a single-shot fast spin echo sequence for image readout. In addition to quantitative knee bone marrow ASL imaging, studies were also performed to evaluate the effects of prolonged post-bolus delay and varied labeling size. ASL imaging was successfully performed with all volunteers. Despite the benefits of hyper-intensive signal suppression within bone marrow, the use of a prolonged post-bolus delay caused excessive perfusion signal decay, resulting in low perfusion signal-to-noise ratio (SNR) and poor image quality. Bone marrow perfusion signal changed with the labeling size, suggesting that the measured bone marrow perfusion signal is flow-associated. The means and standard deviations of bone marrow blood flow, spatial SNR, and temporal SNR from the quantitative perfusion study were 38.3 ± 5.2 mL/100 g/min, 3.31 ± 0.48, and 1.33 ± 0.31, respectively. The imaging results from JOCD patients demonstrated the potential of ASL imaging to detect disease-associated bone marrow perfusion changes. This study demonstrates that it is feasible to perform ASL imaging of knee bone marrow in the distal femoral condyle at 3 T.

Original languageEnglish (US)
Article number5260
JournalScientific reports
Volume10
Issue number1
DOIs
StatePublished - Dec 1 2020

Bibliographical note

Publisher Copyright:
© 2020, The Author(s).

Fingerprint

Dive into the research topics of 'Measuring Knee Bone Marrow Perfusion Using Arterial Spin Labeling at 3 T'. Together they form a unique fingerprint.

Cite this