Model predictive control of an electro-hydraulic powertrain with energy storage

Timothy O. Deppen, Andrew G. Alleyne, Kim A. Stelson, Jonathan J. Meyer

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

This paper presents a model predictive control approach to solving the energy management problem within a series hydraulic hybrid powertrain. The hydraulic hybrid utilizes a high pressure accumulator for energy storage which has superior power density than conventional battery technology. This makes fluid power attractive for urban driving applications in which there are frequent starts and stops and large startup power demands. Model predictive control was chosen for control design because this technique requires no information about the future drive cycle, which can be highly uncertain in urban settings. The proposed control strategy was validated experimentally using an electro-hydraulic powertrain testbed which includes energy storage. The experimental study demonstrates the controller's ability to track a reference trajectory while achieving efficient engine operation.

Original languageEnglish (US)
Title of host publicationASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control, DSCC 2011
Pages225-232
Number of pages8
DOIs
StatePublished - 2011
EventASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control, DSCC 2011 - Arlington, VA, United States
Duration: Oct 31 2011Nov 2 2011

Publication series

NameASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control, DSCC 2011
Volume2

Other

OtherASME 2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control, DSCC 2011
Country/TerritoryUnited States
CityArlington, VA
Period10/31/1111/2/11

Fingerprint

Dive into the research topics of 'Model predictive control of an electro-hydraulic powertrain with energy storage'. Together they form a unique fingerprint.

Cite this