Myc Regulates Chromatin Decompaction and Nuclear Architecture during B Cell Activation

Kyong Rim Kieffer-Kwon, Keisuke Nimura, Suhas S.P. Rao, Jianliang Xu, Seolkyoung Jung, Aleksandra Pekowska, Marei Dose, Evan Stevens, Ewy Mathe, Peng Dong, Su Chen Huang, Maria Aurelia Ricci, Laura Baranello, Ying Zheng, Francesco Tomassoni Ardori, Wolfgang Resch, Diana Stavreva, Steevenson Nelson, Michael McAndrew, Adriel CasellasElizabeth Finn, Charles Gregory, Brian Glenn St. Hilaire, Steven M. Johnson, Wendy Dubois, Maria Pia Cosma, Eric Batchelor, David Levens, Robert D. Phair, Tom Misteli, Lino Tessarollo, Gordon Hager, Melike Lakadamyali, Zhe Liu, Monique Floer, Hari Shroff, Erez Lieberman Aiden, Rafael Casellas

Research output: Contribution to journalArticlepeer-review

128 Scopus citations

Abstract

50 years ago, Vincent Allfrey and colleagues discovered that lymphocyte activation triggers massive acetylation of chromatin. However, the molecular mechanisms driving epigenetic accessibility are still unknown. We here show that stimulated lymphocytes decondense chromatin by three differentially regulated steps. First, chromatin is repositioned away from the nuclear periphery in response to global acetylation. Second, histone nanodomain clusters decompact into mononucleosome fibers through a mechanism that requires Myc and continual energy input. Single-molecule imaging shows that this step lowers transcription factor residence time and non-specific collisions during sampling for DNA targets. Third, chromatin interactions shift from long range to predominantly short range, and CTCF-mediated loops and contact domains double in numbers. This architectural change facilitates cognate promoter-enhancer contacts and also requires Myc and continual ATP production. Our results thus define the nature and transcriptional impact of chromatin decondensation and reveal an unexpected role for Myc in the establishment of nuclear topology in mammalian cells.

Original languageEnglish (US)
Pages (from-to)566-578.e10
JournalMolecular Cell
Volume67
Issue number4
DOIs
StatePublished - Aug 17 2017
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2017

Keywords

  • B cells
  • CTCF
  • Histone acetylation
  • chromatin remodeling
  • cohesin
  • immune response
  • myc
  • nanoscopy
  • nuclear architecture
  • transcriptome amplification

Fingerprint

Dive into the research topics of 'Myc Regulates Chromatin Decompaction and Nuclear Architecture during B Cell Activation'. Together they form a unique fingerprint.

Cite this