Neutrophil elastase promotes macrophage cell adhesion and cytokine production through the integrin-Src kinases pathway

Karina Krotova, Nazli Khodayari, Regina Oshins, George Aslanidi, Mark L. Brantly

Research output: Contribution to journalArticlepeer-review


There are a number of respiratory diseases characterized by the presence of excess neutrophil elastase (NE) activity in tissues, including cystic fibrosis and chronic obstructive pulmonary disease (COPD). NE is considered a primary contributor to disease development, but the precise mechanism has yet to be fully determined. We hypothesized that NE alters the function of macrophages (Mɸ) which play a critical role in many physiological processes in healthy lungs. We demonstrate that monocyte-derived Mɸ exposed to NE releases active matrix metalloproteinases (MMPs), increase expression of pro-inflammatory cytokines TNFα, IL-1β, and IL-8, and reduce capacity to phagocytose bacteria. Changes in Mɸ function following NE treatment were accompanied by increased adhesion and cytoskeleton re-arrangement, indicating the possibility of integrin involvement. To support this observation, we demonstrate that NE induces phosphorylation of kinases from the Src kinase family, a hallmark of integrin signaling activation. Moreover, pretreatment of Mɸ with a specific Src kinase inhibitor, PP2 completely prevents NE-induced pro-inflammatory cytokine production. Taken together these findings indicate that NE participates in lung destruction not only through direct proteolytic degradation of matrix proteins, but also through activation of Mɸ inflammatory and proteolytic functions.

Original languageEnglish (US)
Article number15874
JournalScientific reports
Issue number1
StatePublished - Dec 1 2020

Bibliographical note

Publisher Copyright:
© 2020, The Author(s).

PubMed: MeSH publication types

  • Journal Article
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't


Dive into the research topics of 'Neutrophil elastase promotes macrophage cell adhesion and cytokine production through the integrin-Src kinases pathway'. Together they form a unique fingerprint.

Cite this