Object skeletons from sparse shapes in industrial image settings

Research output: Chapter in Book/Report/Conference proceedingConference contribution

6 Scopus citations

Abstract

Presents a method for computing the shape skeleton of planar objects in presence of noise occurring inside the image regions. Such noise may be due to poor control of lighting conditions, incorrect thresholding or image subsampling. Binary images of objects with such noise exhibit sparseness (lack of connectivity), within their image regions. Such non-contiguity may also be observed in thresholded images of objects which consist of regions having varying albedo. The problem of obtaining the skeletal description of sparse shapes is ill posed in the sense of conventional skeletonization techniques. We propose a skeletonization method which is based on obtaining the shape skeleton by evolving an approximation of the principal curve of the shape distribution. Our method is implemented as a batch mode Kohonen self-organizing map algorithm and involves iterating the following two steps: (1) Voronoi tessellation of the data, (2) kernel smoothing on the Voronoi centroids. Adjacency relationships between the Voronoi regions are obtained by computing a Delaunay triangulation of the centroids. The Voronoi centroids are connected by a minimum spanning tree after each iteration. The final shape skeleton is obtained by joining centroids which are disjoint in the spanning tree, but have adjacent Voronoi regions. The skeletal descriptions obtained with the method are invariant to translation, rotation, and scale changes of the shape. The potential of the method is demonstrated on industrial objects having varying shape complexity under different imaging conditions.

Original languageEnglish (US)
Title of host publicationProceedings - IEEE International Conference on Robotics and Automation
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3388-3393
Number of pages6
ISBN (Print)078034300X
DOIs
StatePublished - 1998
Event15th IEEE International Conference on Robotics and Automation, ICRA 1998 - Leuven, Belgium
Duration: May 16 1998May 20 1998

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
Volume4
ISSN (Print)1050-4729

Other

Other15th IEEE International Conference on Robotics and Automation, ICRA 1998
CountryBelgium
CityLeuven
Period5/16/985/20/98

Bibliographical note

Funding Information:
The authors would like to acknowledge the help of Mike Wade in conducting some of the experiments. This research was supported by the NSF through Grants #IRI-9410003 and #IRI-9502245, the McK- night Land-Grant Professorship Program of the University of Minnesota, and the Department of Energy through Contracts #AC-3752D and #AL-3021.

Funding Information:
This research was supported by the NSF through Grants #IRI-9410003 and #IRI-9502245, the McKnight Land-Grant Professorship Program of the University of Minnesota, and the Department of Energy through Contracts #AC-3752D and #AL-3021.

Publisher Copyright:
© 1998 IEEE.

Fingerprint Dive into the research topics of 'Object skeletons from sparse shapes in industrial image settings'. Together they form a unique fingerprint.

Cite this