Observation of high-energy neutrinos using Čerenkov detectors embedded deep in Antarctic ice

E. Andrés, P. Askebjer, X. Bai, G. Barouch, S. W. Barwick, R. C. Bay, K. H. Becker, L. Bergström, D. Bertrand, D. Bierenbaum, A. Biron, J. Booth, O. Botner, A. Bouchta, M. M. Boyce, S. Carius, A. Chen, D. Chirkin, J. Conrad, J. CooleyC. G S Costa, D. F. Cowen, J. Dailing, E. Dalberg, T. DeYoung, P. Desiati, J. P. Dewulf, P. Doksus, J. Edsjö, P. Ekström, B. Erlandsson, T. Feser, M. Gaug, A. Goldschmidt, A. Goobar, L. Gray, H. Haase, A. Hallgren, F. Halzen, K. Hanson, R. Hardtke, Y. D. He, M. Hellwig, H. Heukenkamp, G. C. Hill, P. O. Hulth, S. Hundertmark, J. Jacobsen, V. Kandhadai, A. Karle, J. Kim, B. Koci, L. Köpke, M. Kowalski, H. Leich, M. Leuthold, P. Lindahl, I. Liubarsky, P. Loaiza, D. M. Lowder, J. Ludvig, J. Madsen, P. Marciniewski, H. S. Matis, A. Mihalyi, T. Mikolajski, T. C. Miller, Y. Minaeva, P. Miočinović, P. C. Mock, R. Morse, T. Neunhöffer, F. M. Newcomer, P. Niessen, D. R. Nygren, H. Ögelman, C. Pérez De Los Heros, R. Porrata, P. B. Price, K. Rawlins, C. Reed, W. Rhode, A. Richards, S. Richter, J. Rodríguez Martino, P. Romenesko, D. Ross, H. Rubinstein, H. G. Sander, T. Scheider, T. Schmidt, D. Schneider, E. Schneider, R. Schwarz, A. Silvestri, M. Solarz, G. M. Spiczak, C. Spiering, N. Starinsky, D. Steele, P. Steffen, R. G. Stokstad, O. Streicher, Q. Sun, I. Taboada, L. Thollander, T. Thon, S. Tilav, N. Usechak, M. Vander Donckt, C. Walck, C. Weinheimer, C. H. Wiebusch, R. Wischnewski, H. Wissing, K. Woschnagg, W. Wu, G. Yodh, S. Young

Research output: Contribution to journalArticlepeer-review

166 Scopus citations

Abstract

Neutrinos are elementary particles that carry no electric charge and have little mass. As they interact only weakly with other particles, they can penetrate enormous amounts of matter, and therefore have the potential to directly convey astrophysical information from the edge of the Universe and from deep inside the most cataclysmic high-energy regions. The neutrino's great penetrating power, however, also makes this particle difficult to detect. Underground detectors have observed low-energy neutrinos from the Sun and a nearby supernova2, as well as neutrinos generated in the Earth's atmosphere. But the very low fluxes of high-energy neutrinos from cosmic sources can be observed only by much larger, expandable detectors in, for example, deep water3,4 or ice5. Here we report the detection of upwardly propagating atmospheric neutrinos by the ice-based Antarctic muon and neutrino detector array (AMANDA). These results establish a technology with which to build a kilometre-scale neutrino observatory necessary for astrophysical observations1.

Original languageEnglish (US)
Pages (from-to)441-443
Number of pages3
JournalNature
Volume410
Issue number6827
DOIs
StatePublished - Mar 22 2001

Fingerprint

Dive into the research topics of 'Observation of high-energy neutrinos using Čerenkov detectors embedded deep in Antarctic ice'. Together they form a unique fingerprint.

Cite this