On crop height estimation with UAVs

David Anthony, Sebastian Elbaum, Aaron Lorenz, Carrick Detweiler

Research output: Chapter in Book/Report/Conference proceedingConference contribution

68 Scopus citations

Abstract

Remote sensing by Unmanned Aerial Vehicles (UAVs) is changing the way agriculture operates by increasing the spatial-temporal resolution of data collection. Micro-UAVs have the potential to further improve and enrich the data collected by operating close to the crops, enabling the collection of higher spatio-temporal resolution data. In this paper, we present a UAV-mounted measurement system that utilizes a laser scanner to compute crop heights, a critical indicator of crop health. The system filters, transforms, and analyzes the cluttered range data in real-time to determine the distance to the ground and to the top of the crops. We assess the system in an indoor testbed and in a corn field. Our findings indicate that despite the dense canopy and highly variable sensor readings, we can precisely fly over crops and measure its height to within 5cm of measurements gathered using current measurement technology.

Original languageEnglish (US)
Title of host publicationIROS 2014 Conference Digest - IEEE/RSJ International Conference on Intelligent Robots and Systems
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4805-4812
Number of pages8
ISBN (Electronic)9781479969340
DOIs
StatePublished - Oct 31 2014
Event2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2014 - Chicago, United States
Duration: Sep 14 2014Sep 18 2014

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Other

Other2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2014
CountryUnited States
CityChicago
Period9/14/149/18/14

Bibliographical note

Publisher Copyright:
© 2014 IEEE.

Fingerprint Dive into the research topics of 'On crop height estimation with UAVs'. Together they form a unique fingerprint.

Cite this