On the method of penalization

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

In this article, we study convergence properties of the method of penalization and related estimates. A penalized estimate is defined as an optimizer of a scaled criterion with a penalty that penalizes undesirable properties of the parameters. We develop some exponential probability bounds for the penalized likelihood ratios with a general penalty. Based on these inequalities, rates of convergence of the penalized estimates can be quantified. When convergence is measured by the Hellinger distance, the rate of convergence of the penalized maximum likelihood estimate depends only on the size of the parameter space and the penalization coefficient. We also explore the role of penalty in the penalization process, especially its relationship with the convergence properties and its connection with Bayesian analysis. We illustrate the theory by several examples.

Original languageEnglish (US)
Pages (from-to)337-357
Number of pages21
JournalStatistica Sinica
Volume8
Issue number2
StatePublished - Apr 1998

Keywords

  • Convergence properties
  • Exponential bound
  • Penalization
  • Posterior distribution

Fingerprint

Dive into the research topics of 'On the method of penalization'. Together they form a unique fingerprint.

Cite this