On the number of errors correctable with codes on graphs

Alexander Barg, Arya Mazumdar

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We estimate the number of errors corrected by two different ensembles of codes on graphs (generalized LDPC codes), namely codes on regular bipartite graphs and their extension to hypergraphs.

Original languageEnglish (US)
Title of host publication2009 IEEE International Symposium on Information Theory, ISIT 2009
Pages2482-2486
Number of pages5
DOIs
StatePublished - 2009
Event2009 IEEE International Symposium on Information Theory, ISIT 2009 - Seoul, Korea, Republic of
Duration: Jun 28 2009Jul 3 2009

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
ISSN (Print)2157-8102

Other

Other2009 IEEE International Symposium on Information Theory, ISIT 2009
Country/TerritoryKorea, Republic of
CitySeoul
Period6/28/097/3/09

Fingerprint

Dive into the research topics of 'On the number of errors correctable with codes on graphs'. Together they form a unique fingerprint.

Cite this