Optical hyperpolarization and NMR detection of 129 Xe on a microfluidic chip

Ricardo Jiménez-Martínez, Daniel J. Kennedy, Michael Rosenbluh, Elizabeth A. Donley, Svenja Knappe, Scott J. Seltzer, Hattie L. Ring, Vikram S. Bajaj, John Kitching

Research output: Contribution to journalArticlepeer-review

38 Scopus citations


Optically hyperpolarized 129 Xe gas has become a powerful contrast agent in nuclear magnetic resonance (NMR) spectroscopy and imaging, with applications ranging from studies of the human lung to the targeted detection of biomolecules. Equally attractive is its potential use to enhance the sensitivity of microfluidic NMR experiments, in which small sample volumes yield poor sensitivity. Unfortunately, most 129 Xe polarization systems are large and non-portable. Here we present a microfabricated chip that optically polarizes 129 Xe gas. We have achieved 129 Xe polarizations >0.5% at flow rates of several microlitres per second, compatible with typical microfluidic applications. We employ in situ optical magnetometry to sensitively detect and characterize the 129 Xe polarization at magnetic fields of 1ã €‰Î 1/4T. We construct the device using standard microfabrication techniques, which will facilitate its integration with existing microfluidic platforms. This device may enable the implementation of highly sensitive 129 Xe NMR in compact, low-cost, portable devices.

Original languageEnglish (US)
Article number3908
JournalNature communications
StatePublished - May 20 2014

Fingerprint Dive into the research topics of 'Optical hyperpolarization and NMR detection of 129 Xe on a microfluidic chip'. Together they form a unique fingerprint.

Cite this