Optimal ascent trajectories for stratospheric airships using wind energy

Joseph B Mueller, Yiyuan J. Zhao, William L Garrard

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Stratospheric airships are lighter-than-air (LTA) vehicles that have the potential to pro- vide an extremely long-duration airborne presence at altitudes of 18-22 km. In this paper, we examine optimal ascent trajectories that utilize wind energy to achieve minimum-time and minimum-energy flights. The airship is represented by a three-dimensional point mass model, and the equations of motion include aerodynamic lift and drag, vectored thrust, added mass effects, and accelerations due to mass flow rate, wind rates, and Earth rotation. A representative wind profile is developed based on historical meteorological data and measurements. Trajectory optimization is performed by first defining an optimal control problem with both terminal and path constraints, then using direct collocation to develop an approximate nonlinear parameter optimization problem of finite dimension. Optimal ascent trajectories are determined using SNOPT for a variety of upwind, downwind, and crosswind launch locations. Results of extensive optimization solutions illustrate definitive patterns in the ascent path for minimum time flights across varying launch locations, and show that significant energy savings can be realized with minimum-energy flights, com- pared to minimum-time flights, given small increases in flight time. In addition, the effects of time-varying mass and Earth rotation are found to be comparable to the effects of wind rate, and are utilized in the optimal solutions.

Original languageEnglish (US)
Title of host publicationAIAA Infotech at Aerospace Conference and Exhibit and AIAA Unmanned...Unlimited Conference
StatePublished - Dec 1 2009
EventAIAA Infotech at Aerospace Conference and Exhibit and AIAA Unmanned...Unlimited Conference - Seattle, WA, United States
Duration: Apr 6 2009Apr 9 2009

Publication series

NameAIAA Infotech at Aerospace Conference and Exhibit and AIAA Unmanned...Unlimited Conference

Other

OtherAIAA Infotech at Aerospace Conference and Exhibit and AIAA Unmanned...Unlimited Conference
Country/TerritoryUnited States
CitySeattle, WA
Period4/6/094/9/09

Fingerprint

Dive into the research topics of 'Optimal ascent trajectories for stratospheric airships using wind energy'. Together they form a unique fingerprint.

Cite this