Optimal Regulation of Virtual Power Plants

Emiliano Dall Anese, Swaroop S. Guggilam, Andrea Simonetto, Yu Christine Chen, Sairaj V. Dhople

Research output: Contribution to journalArticlepeer-review

32 Scopus citations

Abstract

This paper develops a real-time algorithmic framework for aggregations of distributed energy resources (DERs) in distribution networks to provide regulation services in response to transmission-level requests. Leveraging online primal-dual-type methods for time-varying optimization problems and suitable linearizations of the nonlinear AC power-flow equations, this work establishes a system-theoretic foundation to realize the vision of distribution-level virtual power plants. The optimization framework controls the output powers of dispatchable DERs such that, in aggregate, they respond to automatic generation control and/or regulation-services commands. This is achieved while concurrently regulating voltages within the feeder and maximizing customers' and utility's performance objectives. Convergence and tracking capabilities are analytically established under suitable modeling assumptions. Simulations are provided to validate the proposed approach.

Original languageEnglish (US)
Pages (from-to)1868-1881
Number of pages14
JournalIEEE Transactions on Power Systems
Volume33
Issue number2
DOIs
StatePublished - Mar 2018

Bibliographical note

Funding Information:
Manuscript received December 7, 2016; revised April 22, 2017 and June 26, 2017; accepted August 15, 2017. Date of publication August 18, 2017; date of current version February 16, 2018. This work was supported by the U.S. Department of Energy under Contract DE-AC36-08GO28308 with the National Renewable Energy Laboratory. The work of E. Dall’Anese, S. Guggilam, and S. V. Dhople was supported by the Advanced Research Projects Agency-Energy under the Network Optimized Distributed Energy Systems Program. Paper no. TPWRS-01837-2016. (Corresponding author: Emiliano Dall’Anese.) E. Dall’Anese is with the National Renewable Energy Laboratory, Golden, CO 80401 USA (e-mail: emiliano.dallanese@nrel.gov).

Publisher Copyright:
© 2017 IEEE.

Keywords

  • Distribution systems
  • optimization with feedback
  • real-time optimization
  • virtual power plants

Fingerprint

Dive into the research topics of 'Optimal Regulation of Virtual Power Plants'. Together they form a unique fingerprint.

Cite this