Optimisation of a multi-gravity separator with novel modifications for the recovery of ferberite

Robert Fitzpatrick, Patrick Hegarty, Keith Fergusson, Gavyn Rollinson, Weiguo Xie, Treve Mildren

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Tungsten is considered by the European Union as a critical raw material for future development due to its expected demand and scarcity of resource within Europe. It is therefore, critical to optimize European tungsten operations and maximise recoveries. The role of enhanced gravity/centrifugal concentrators in recovering tungsten from ultra-fine fractions should form an important part of this aim. Reported herein are the results of investigations to improve efficiency of Wolf Minerals’ Draklends mine, a major European tungsten mine, by recovering saleable material from a magnetic waste stream of a low-intensity magnetic separator using an enhanced gravity concentrator. The mine hosts wolframite and ferberite as the main tungsten bearing mineral species. A Mozley multi-gravity separator (MGS) C-900 was selected as it is suited to exploiting small variations in mineral density to affect a separation. Working with a current manufacturer, a novel scraping blade system was tested. To assess the MGS in a statistically valid manner, a response surface methodology was followed to determine optimal test conditions. The test programme showed that the most important parameters were drum speed and wash water rate. Under optimal conditions the model predicted that 40% of the tungsten could be recovered above the required grade of 43% WO3.

Original languageEnglish (US)
Article number191
JournalMinerals
Volume8
Issue number5
DOIs
StatePublished - May 2018
Externally publishedYes

Bibliographical note

Funding Information:
This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 642201.

Funding Information:
This project has received funding from the European Union?s Horizon 2020 research and innovation programme under grant agreement No. 642201.

Publisher Copyright:
© 2018 by the authors. Licensee MDPI, Basel, Switzerland.

Keywords

  • Central composite rotatable design
  • Centrifugal gravity separation
  • Quantitative mineralogy
  • Response surface method
  • Tungsten-bearing minerals

Fingerprint

Dive into the research topics of 'Optimisation of a multi-gravity separator with novel modifications for the recovery of ferberite'. Together they form a unique fingerprint.

Cite this