Parsimony pressure made easy: Solving the problem of bloat in GP

Riccardo Poli, Nicholas Freitag McPhee

    Research output: Chapter in Book/Report/Conference proceedingChapter

    6 Scopus citations

    Abstract

    The parsimony pressure method is perhaps the simplest and most frequently used method to control bloat in genetic programming (GP). In this chapter we first reconsider the size evolution equation for genetic programming developed in Poli andMcPhee (Evol Comput 11(2):169-206, 2003) and rewrite it in a form that shows its direct relationship to Price’s theorem. We then use this new formulation to derive theoretical results that show how to practically and optimally set the parsimony coefficient dynamically during a run so as to achieve complete control over the growth of the programs in a population. Experimental results confirm the effectiveness of the method, as we are able to tightly control the average program size under a variety of conditions. These include such unusual cases as dynamically varying target sizes so that the mean program size is allowed to grow during some phases of a run, while being forced to shrink in others.

    Original languageEnglish (US)
    Title of host publicationNatural Computing Series
    PublisherSpringer Verlag
    Pages181-204
    Number of pages24
    DOIs
    StatePublished - Jan 1 2014

    Publication series

    NameNatural Computing Series
    Volume45
    ISSN (Print)1619-7127

    Fingerprint

    Dive into the research topics of 'Parsimony pressure made easy: Solving the problem of bloat in GP'. Together they form a unique fingerprint.

    Cite this