Photothermally activated drug release from liposomes coupled to hollow gold nanoshells

Natalie Forbes, Joseph A. Zasadzinski

Research output: Chapter in Book/Report/Conference proceedingConference contribution

3 Scopus citations

Abstract

Liposomes show great promise as intravenous drug delivery vehicles, but it is difficult to combine stability in the circulation, extended drug retention and rapid, targeted release at the site of interest. Accessorizing conventional and multicompartment liposomes with photo-activated hollow gold nanoshells (HGN) provides a convenient method to initiate drug release with spatial and temporal control. HGN efficiently absorb near infrared (NIR) light and rapidly convert the absorbed optical energy into heat. Femto- to nano-second NIR light pulses cause the HGNs to rapidly heat, creating large temperature gradients between the HGNs and surrounding fluid. The formation and collapse of unstable vapor bubbles transiently rupture liposome and other bilayer membranes to trigger contents release. Near-complete contents release occurs when the nanoshells are encapsulated within the liposome or tethered to the outer surface of the liposome, with no chemical damage to the contents. Release is achieved by focusing the laser beam at the target, eliminating the need for highly specific targeting ligands or antibodies. Although HGN heating can be intense, the overall energy input is small causing minimal heating of the surroundings. To ensure that drugs are retained within the liposomes until delivery in a physiological environment, we have made novel multicompartment carriers called vesosomes, which consist of an outer lipid bilayer shell that encloses and protects the drug-carrying liposomes. The second bilayer increases the serum half-life of ciprofloxacin from <10 minutes in liposomes to 6 hours in vesosomes and alters the release kinetics. The enhanced drug retention is due to the outer membrane preventing enzymes and proteins in the blood from breaking down the drug-carrying interior compartments.

Original languageEnglish (US)
Title of host publicationPlasmonics in Biology and Medicine VIII
DOIs
StatePublished - 2011
EventPlasmonics in Biology and Medicine VIII - San Francisco, CA, United States
Duration: Jan 23 2011Jan 24 2011

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume7911
ISSN (Print)1605-7422

Conference

ConferencePlasmonics in Biology and Medicine VIII
Country/TerritoryUnited States
CitySan Francisco, CA
Period1/23/111/24/11

Keywords

  • Cancer chemotherapy
  • Specific targeting
  • Surface plasmon resonance
  • Vesicles
  • Vesosomes

Fingerprint

Dive into the research topics of 'Photothermally activated drug release from liposomes coupled to hollow gold nanoshells'. Together they form a unique fingerprint.

Cite this