Polyimide-etalon all-optical ultrasound transducer for high frequency applications

Clay Sheaff, Shai Ashkenazi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

9 Scopus citations

Abstract

We have enhanced our design for an all-optical high frequency ultrasound transducer consisting of a UV-absorbing polyimide film integrated into an etalon receiver operating in the NIR range. A dielectric stack having high NIR reflectivity and high UV transmittance was chosen as the first mirror for increased sensitivity and the allowance of polyimide as the etalon medium. A 13 ns, 0.7 μJ optical pulse at 355 nm and a continuous-wave NIR laser were focused onto the structure with a spot diameter of 120 and 35 μm, respectively. In receive mode the etalon had a noise-equivalent pressure of 4.1 kPa over a bandwidth of 5 - 50 MHz (0.61 Pa/√Hz). The device generated a pressure of 270 kPa at a depth of 200 μm, and the -3 dB bandwidth of the emission extended from 27 to 60 MHz. In transmit/receive mode, the pulse-echo had a center frequency of 35 MHz with a -6 dB bandwidth of 49 MHz (140 %). Lastly, wire targets were imaged by scanning the UV spot to create a synthetic aperture of transmitters centered upon a single receiver.

Original languageEnglish (US)
Title of host publicationPhotons Plus Ultrasound
Subtitle of host publicationImaging and Sensing 2014
PublisherSPIE
ISBN (Print)9780819498564
DOIs
StatePublished - Jan 1 2014
EventPhotons Plus Ultrasound: Imaging and Sensing 2014 - San Francisco, CA, United States
Duration: Feb 2 2014Feb 5 2014

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume8943
ISSN (Print)1605-7422

Conference

ConferencePhotons Plus Ultrasound: Imaging and Sensing 2014
CountryUnited States
CitySan Francisco, CA
Period2/2/142/5/14

Keywords

  • Etalon
  • Fabry-Perot
  • Photoacoustic
  • Thermoelastic
  • Ultrasound

Fingerprint Dive into the research topics of 'Polyimide-etalon all-optical ultrasound transducer for high frequency applications'. Together they form a unique fingerprint.

Cite this