Predicting the outcome of intramuscular psoas lengthening in children with cerebral palsy using preoperative gait data and the random forest algorithm

Michael H. Schwartz, Adam Rozumalski, Walter Truong, Tom F. Novacheck

Research output: Contribution to journalArticlepeer-review

28 Scopus citations

Abstract

This study used the random forest algorithm to predict outcomes of intramuscular psoas lengthening as part of a single event multi-level surgery in patients with cerebral palsy. Data related to preoperative medical history, physical exam, and instrumented three-dimensional gait analysis were extracted from a historic database in a motion analysis center. Data from 800 limbs of patients with diplegic cerebral palsy were analyzed. An index quantifying the overall deviation in pelvic tilt and hip flexion was used to define outcome categories. The random forest algorithm was used to derive criteria that predicted the outcome of a limb. The criteria were applied to limbs that underwent psoas lengthening with outstanding results (accuracy. =. .78, sensitivity. =. .82, specificity. =. .73). The criteria were then validated using an extended retrospective case-control design. Case limbs met the criteria and underwent psoas lengthening. Control limbs met the criteria, but did not undergo psoas lengthening. Over-treated limbs failed the criteria and underwent psoas lengthening. Other-treated limbs failed the criteria and did not undergo psoas lengthening. The rate of good outcomes among Cases exceeded that observed among controls (82% vs. 60%, relative risk. =. 1.37), and far exceeded that observed in Over-treated limbs (27%). Other-treated limbs had good outcomes 52% of the time. Application of the criteria in the future is estimated to increase the overall rate of good pelvis-hip outcomes from 58% to 72% among children with diplegia who undergo single-event multi-level surgery (SEMLS).

Original languageEnglish (US)
Pages (from-to)473-479
Number of pages7
JournalGait and Posture
Volume37
Issue number4
DOIs
StatePublished - Apr 2013
Externally publishedYes

Keywords

  • Cerebral Palsy
  • Criteria
  • Gait
  • Gait Analysis
  • Outcome
  • Psoas
  • Random Forest
  • Single event multi level surgery

Fingerprint

Dive into the research topics of 'Predicting the outcome of intramuscular psoas lengthening in children with cerebral palsy using preoperative gait data and the random forest algorithm'. Together they form a unique fingerprint.

Cite this